Skip to main content
Log in

Electrochemical gating of single osmium molecules tethered to Au surfaces

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical study of electron transport between Au electrodes and the redox molecule Os[(bpy)2(PyCH2 NH2CO-]ClO4 tethered to molecular linkers of different length (1.3 to 2.9 nm) to Au surfaces has shown an exponential decay of the rate constant k ET 0 with a slope β = 0.53 consistent with through bond tunneling to the redox center. Electrochemical gating of single osmium molecules in an asymmetric tunneling nano-gap between a Au(111) substrate electrode modified with the redox molecules and a Pt-Ir tip of a scanning tunneling microscope was achieved by independent control of the reference electrode potential in the electrolyte, E ref − E s, and the tip-substrate bias potential, E bias. Enhanced tunneling current at the osmium complex redox potential was observed as compared to the off resonance set point tunneling current with a linear dependence of the overpotential at maximum current vs. the E bias. This corresponds to a sequential two-step electron transfer with partial vibration relaxation from the substrate Au(111) to the redox molecule in the nano-gap and from this redox state to the Pt-Ir tip according to the model of Kuznetsov and Ulstrup (J Phys Chem A 104: 11531, 2000). Comparison of short and long linkers of the osmium complex has shown the same two-step ET (electron transfer) behavior due to the long time scale in the complete reduction-oxidation cycle in the electrochemical tunneling spectroscopy (EC-STS) experiment as compared to the time constants for electron transfer for all linker distances, k ET 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Appleby AJ, Zagal JH (2011) Free energy relationships in electrochemistry: a history that started in 1935. J Solid State Electrochem 15(7–8):1811–1832

    Article  CAS  Google Scholar 

  2. Bedioui F, Griveau S, Nyokong T, Appleby AJ, Caro CA, Gulppi M, Ochoa G, Zagal JH (2007) Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols. Phys Chem Chem Phys 9(26):3383–3396

    Article  CAS  Google Scholar 

  3. Bingqian X, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301(5637):1221–1223

    Article  Google Scholar 

  4. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29(2):277–283

    Article  CAS  Google Scholar 

  5. Chidsey CED (1991) Free energy and temperature dependence of electron transfer at the metal-electrolyte interface. Science 251:919–922

    Article  CAS  Google Scholar 

  6. Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I J Chem Phys 24:966

    Article  CAS  Google Scholar 

  7. Marcus RA (1957) On the theory of oxidation-reduction reactions involving electron transfer. II. Applications to data on the rates of isotopic exchange reactions. J Chem Phys 26:867

    Article  CAS  Google Scholar 

  8. Marcus RA (1959) On the theory of eelectrochemical and chemical electron transfer processes. Can J Chem 37:155

    Article  CAS  Google Scholar 

  9. Marcus RA (1965) On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J Chem Phys 43:679

    Article  CAS  Google Scholar 

  10. Marcus RA (1993) Electron transfer reactions in chemistry: theory and experiment (Nobel lecture). Angew Chem Int Ed Engl 32(8):1111–1121

    Article  Google Scholar 

  11. Tao N (1996) Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. Phys Rev Lett 76:4066

    Article  CAS  Google Scholar 

  12. Schmickler W, Tao NJ (1997) Measuring the inverted region of an electron transfer reaction with a scanning tunneling microscope. Electrochim Acta 42(18):2809–2815

    Article  CAS  Google Scholar 

  13. Albrecht T, Guckian A, Ulstrup J, Vos JG (2005) Transistor-like behavior of transition metal complexes. Nano Lett 5:1451

    Article  CAS  Google Scholar 

  14. Albrecht T, Moth-Poulsen K, Christensen JB, Guckian A, Bjornholm T, Vos JG, Ulstrup J (2006) In situ scanning tunnelling spectroscopy of inorganic transition metal complexes. Faraday Discuss 131:265

    Article  CAS  Google Scholar 

  15. Albrecht T, Moth-Poulsen K, Christensen JB, Guckian A, Bjørnholm T, Vos JG, Ulstrup J (2006) In situ scanning tunnelling spectroscopy of inorganic transition metal complexes. Faraday Discuss 131:265–279

    Article  CAS  Google Scholar 

  16. Albretch T, Guckian A, Ulstrup J, Vos JG (2005) Transistor effects and in situ STM of redox molecules at room temperature. IEEE Trans Nanotechnol 4:430

    Article  Google Scholar 

  17. Albretch T, Moth-Poulsen K, Christensen JB, Bjornholm T, Ulstrup J (2006) Scanning tunneling spectroscopy in an ionic liquid. J Am Chem Soc 128:6574

    Article  Google Scholar 

  18. Li C, Mishchenko A, Li Z, Pobelov I, Wandlowski T, Li XQ, Würthner F, Bagrets A, Evers F (2008) Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions. J Phys Condens Matter 20(37)

  19. Pobelov I, Zhihai L, Wandlowski TH (2009) Electrolyte gating in redox-active tunneling junctions an electrochemical STM approach. J Am Chem Soc 130:16045

    Article  Google Scholar 

  20. Li Z, Liu Y, Mertens SFL, Pobelov IV, Wandlowski T (2010) From redox gating to quantized charging. J Am Chem Soc 132(23):8187–8193

    Article  CAS  Google Scholar 

  21. Han B, Li Z, Li C, Pobelov I, Su G, Aguilar-Sanchez R, Wandlowski T (2009) From self-assembly to charge transport with single molecules—an electrochemical approach. Top Curr Chem 287

  22. Zhou XS, Liu L, Fortgang P, Lefevre AS, Serra-Muns A, Raouafi N, Amatore C, Mao BW, Maisonhaute E, Schöllhorn B (2011) Do molecular conductances correlate with electrochemical rate constants? Experimental insights. J Am Chem Soc 133(19):7509–7516

    Article  CAS  Google Scholar 

  23. Ricci AM, Calvo EJ, Martin S, Nichols RJ (2010) Electrochemical scanning tunneling spectroscopy of redox-active molecules bound by Au-C bonds. J Am Chem Soc 132(8):2494-+

    Article  CAS  Google Scholar 

  24. Ricci A, Bonazzola C, Calvo EJ (2006) An FT-IRRAS study of nitrophenyl mono- and multilayers electro-deposited on gold by reduction of the diazonium salt. Phys Chem Chem Phys 8(37):4297–4299

    Article  CAS  Google Scholar 

  25. Saby C, Ortiz B, Champagne GY, Bélanger D (1997) Electrochemical modification of glassy carbon electrode using aromatic diazonium salts. 1. Blocking effect of 4-nitrophenyl and 4-carboxyphenyl groups. Langmuir 13 (25):6805–6813

  26. Ricci AM, Rolli C, Rothacher S, Baraldo L, Bonazzola C, Calvo EJ, Tognalli N, Fainstein A (2007) Electron transfer at Au surfaces modified by tethered osmium bipyridine-pyridine complexes. J Solid State Electrochem 11:1511–1520

    Article  CAS  Google Scholar 

  27. Ricci AM, Tagliazucchi M, Calvo EJ (2012) Charge regulation in redox active monolayers embedded in proton exchanger surfaces. Phys Chem Chem Phys 14(28):9988–9995

    Article  CAS  Google Scholar 

  28. Ricci AM, Tognalli N, de la Llave E, Vericat C, Mendez De Leo LP, Williams FJ, Scherlis D, Salvarezzac R, Calvo EJ (2011) Electrochemistry of os(2,2′-bpy)(2)ClPyCH2NHCOPh tethered to Au electrodes by S-Au and C-Au junctions. Phys Chem Chem Phys 13(12):5336–5345

    Article  CAS  Google Scholar 

  29. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2 edn. Wiley, New York

  30. Gerischer H (1960) Z Phys Chem NF 26:223

    Article  CAS  Google Scholar 

  31. W. Schmickler, Frank S. (2003) Quantum theory of electrochemical electron-transfer reactions. In: Calvo EJ (ed) Interfacial kinetics and mass transport, vol 2, Ch. 2. Encyclopedia of electrochemistry. Wiley VCH, Weinheim, pp 31–48

    Google Scholar 

  32. Nitzan A (2001) Electron transmission through molecules and molecular interfaces. Annu Rev Phys Chem 52:681

    Article  CAS  Google Scholar 

  33. Nitzan A (2003) Electronic tunnel factors in molecular electron transfer and molecular conduction. In: Calvo EJ (ed) Interfacial kinetics and mass transport, vol 2. encyclopedia of electrochemistry. Wiley VCH, Weinheim, pp. 49–78

    Google Scholar 

  34. Miller CJ, Rubinstein I (1995) Physical electrochemistry. Marcel Dekker, New York

    Google Scholar 

  35. Zhang J, Kuznetsov AM, Medvedev IG, Chi Q, Albrecht T, Jensen PS, Ulstrup J (2008) Single-molecule electron transfer in electrochemical environments. Chem Rev 108:2737–2791

    Article  CAS  Google Scholar 

  36. Kuznetsov A, Ulstrup J M (2000) Mechanisms of in situ scanning tunnelling microscopy of organized redox molecular assemblies. J Phys Chem A 104:11531

    Article  CAS  Google Scholar 

  37. Zhang J, Chi Q, Kuznetsov A, Hansen AG M, Wackerbarth H, HEM C, JET A, Ulstrup J (2002) Electronic properties of functional biomolecules at metal/aqueous solution interfaces. J Phys Chem B 106:1131

    Article  CAS  Google Scholar 

  38. Ricci AM, Mendez De Leo LP, Williams FJ, Calvo EJ (2012) Some evidence for the formation of an azo bond during the electroreduction of diazonium salts on Au substrates. ChemPhysChem 13(8):2119–2127

    Article  CAS  Google Scholar 

  39. Vericat C, Vela ME, Salvarezza RC (2005) Self-assembled monolayers of alkanethiols on Au(111): surface structures, defects and dynamics. Phys Chem Chem Phys 7(18):3258–3268

    Article  CAS  Google Scholar 

  40. Kakiuchi T, Iida M, Gon N, Hobara D, Imabayashi SI, Niki K (2001) Miscibility of adsorbed 1-undecanethiol and 11-mercaptoundecanoic acid species in binary self-assembled monolayers on Au(111). Langmuir 17(5):1599–1603

    Article  CAS  Google Scholar 

  41. De La Llave E, Ricci A, Calvo EJ, Scherlis DA (2008) Binding between carbon and the Au(111) surface and what makes it different from the S-Au(111) bond. J Phys Chem C 112(45):17611–17617

    Article  Google Scholar 

  42. Amatore C, Bouret Y, Maisonhaute E, Abruña HD, Goldsmith JI (2003) Electrochemistry within molecules using ultrafast cyclic voltammetry. C R Chim 6(1):99–115

    Article  CAS  Google Scholar 

  43. Creager SE, Wooster TT (1998) A new way of using ac voltammetry to study redox kinetics in electroactive monolayers. Anal Chem 70(20):4257–4263

    Article  CAS  Google Scholar 

  44. Creager SE, Yu CJ, Bamdad C, O’ Connor S, MacLean T, Lam E, Chong Y, Olsen GT, Luo J, Gozin M, Kayyem JF (1999) Electron transfer at electrodes through conjugated “molecular wire” bridges. J Am Chem Soc 121:1059–1064

    Article  CAS  Google Scholar 

  45. Finklea HO (2003) Electron transfer. In: JFR M, Rubinstein I (eds) Modified electrodes, vol 10. Encyclopedia of electrochemistry. Wley-VCH, Weinheim, pp. 625–650

    Google Scholar 

Download references

Acknowledgments

Financial support from the University of Buenos Aires, CONICET and ANPCyT is greatly acknowledged. We thank Prof. Mark Ratner for fruitful discussions on the mechanisms of ET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto J. Calvo.

Additional information

This work is dedicated to Prof. Jose H. Zagal on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera, S., Adam, C., Ricci, A. et al. Electrochemical gating of single osmium molecules tethered to Au surfaces. J Solid State Electrochem 20, 957–967 (2016). https://doi.org/10.1007/s10008-015-2983-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2983-8

Keywords

Navigation