Skip to main content
Log in

An electrochemical quartz crystal microbalance study on adsorption of single walled carbon nanotubes onto poly[3,4-ethylenedioxythiophene] layers

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Deposition by adsorption of single walled carbon nanotubes (SWCNTs) onto electrodeposited poly[3,4-ethylenedioxythiophene] (PEDOT) films is reported. Electrochemical quartz crystal microbalance (EQCM) measurements in dispersive mode reveal resonance frequency decrease as well as growth of acoustic resistance during the SWCNT deposition. These data were interpreted in terms of increasing of the roughness of the surface and the corresponding change of surface impedance. The thus in situ obtained estimates of size and irregularities agree with ex situ scanning electron microscopy data. Transmission electron microscopy was used to analyze the size and the morphology of the SWCNTs, which were mostly occurring as bundles of nanotubes rather than individual ones. Electroactivity of PEDOT and PEDOT-SWCNT films was studied with regard to the detection of dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rumiche F, Wang HH, Indacochea JE (2012) Sensors Actuats B Chem 163:97–106

    Article  CAS  Google Scholar 

  2. Barsan MM, Carvalho RC, Zhong Y, Sun X, Brett CMA (2012) Electrochim Acta 85:203–209

    Article  CAS  Google Scholar 

  3. Liu M, Wen Y, Li D, Yue R, Xu J, He H (2011) Sensors Actuators B Chem 159:277–285

    Article  CAS  Google Scholar 

  4. Liu M, Wen Y, Xu J, He H, Li D, Yue R, Liu G (2011) Anal Sci 27:477–482

    Article  Google Scholar 

  5. Xu G, Li B, Cui XT, Ling L, Luo X (2013) Sensors Actuators B Chem 188:405–410

    Article  CAS  Google Scholar 

  6. Lin K-C, Tsai T-H, Cheng S-M (2010) Biosens Bioelectron 26:608–614

    Article  CAS  Google Scholar 

  7. Gerwig R, Fuchsberger K, Schroeppel B, Link GS, Heusel G, Kraushaar U, Schuhmann W, Stett A, Stelzle M (2012) Front Neuroenerg 5(8):1–10

    Google Scholar 

  8. Badhulika S, Myung NV, Mulchandani A (2014) Talanta 123:109–114

    Article  CAS  Google Scholar 

  9. Peng C, Zhang S, Jewell D, Chen GZ (2008) Progr Nat Sci 18:777–788

    Article  CAS  Google Scholar 

  10. Snook GA, Kao P, Best AS (2011) J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  11. Lota K, Khomenko V, Frackowiak E (2004) J Phys Chem Solid 65:295–301

    Article  CAS  Google Scholar 

  12. Peng C, Jin J, Chen GZ (2007) Electrochim Acta 53:525–537

    Article  CAS  Google Scholar 

  13. Wang J, Xu Y, Sun X, Li X, Du X (2008) J Solid State Electrochem 12:947–952

    Article  CAS  Google Scholar 

  14. Xiao Q, Zhou X (2003) Electrochim Acta 48:575–580

    Article  CAS  Google Scholar 

  15. Levi N, Levi MD, Aurbach D, Demadrille R, Pron A (2010) J Phys Chem C 114:16823–16831

    Article  Google Scholar 

  16. Snook GA, Chen GZ, Fray DJ, Huges M, Schaffer M (2004) J Electroanal Chem 568:135–142

    Article  CAS  Google Scholar 

  17. Sun X, Xu Y, Wang J (2012) J Solid State Electrochem 16:1781–1789

    Article  CAS  Google Scholar 

  18. Pieta P, Grodzka E, Winkler K, Venukadasula GM, D’Souza F (2008) Phys Stat Solids (b) 245(10):2292–2295

    Article  CAS  Google Scholar 

  19. Pieta P, Grodzka E, Winkler K, Warczak M, Sadkowski A, Zukowska GZ, Venukadasula GM, D’Souza F, Kutner W (2009) J Phys Chem B 113:6682–6691

    Article  CAS  Google Scholar 

  20. Pieta P, Venukadasula GM, D’Souza F, Kutner W (2009) J Phys Chem C 113:14046–14058

    Article  CAS  Google Scholar 

  21. Zheng L, Wang X, An H, Wang X, Yi L, Bai L (2011) J Solid State Electrochem 15:675–681

    Article  CAS  Google Scholar 

  22. Guo D-J, Li H-L (2005) J Solid State Electrochem 9:445–449

    Article  CAS  Google Scholar 

  23. Moore CE, Inzelt G (2015) J Solid State Electrochem 19:45–56

    Article  CAS  Google Scholar 

  24. Johannsmann D, QCM Modelling Tutorial, Clausthal, http://www2.pc.tu-clausthal.de/dj/software_en.shtml

  25. Ispas A, Bund A (2014) Electrochemical quartz crystal microbalance, In: Encyclopedia of applied electrochemistry, Vol. 1, Springer, A - E. - New York, NY:pp 554-568

  26. Aygun A, Buthker JW, Stephenson LD, Kumar A, Mahle TK, Gewirth AA (2012) J Electroanal Chem 684:47–52

    Article  CAS  Google Scholar 

  27. Hillman AR, Dong Q, Mohamoud MA, Efimov I (2010) Electrochim Acta 55:8142–8153

    Article  CAS  Google Scholar 

  28. Urbakh M, Daikhin L (1994) Phys Rev B 49:4866–4870

    Article  CAS  Google Scholar 

  29. Bandey HL, Hillman AR, Brown MJ, Martin SJ (1997) Faraday Discuss 107:105–121

    Article  CAS  Google Scholar 

  30. Hillman AR, Efimov I, Skompska M (2005) J Am Chem Soc 127(11):3817–3824

    Article  CAS  Google Scholar 

  31. Bund A, Schwitzgebel G (2000) Electrochim Acta 45(22-23):3703–3710

    Article  CAS  Google Scholar 

  32. Gruia V-T, Ispas A, Wilke M, Efimov I, Bund A (2014) Electrochim Acta 118:88–91

    Article  CAS  Google Scholar 

  33. Tsakova V, Milchev A, Schultze JW (1993) J Electroanal Chem 346:85–97

    Article  CAS  Google Scholar 

  34. Tsakova V, Milchev A (1991) Electrochim Acta 36:1579–1583

    Article  CAS  Google Scholar 

  35. Stoyanova A, Tsakova V (2010) J Solid State Electrochem 14:1947–1955

    Article  CAS  Google Scholar 

  36. Komsiyska L, Tsakova V (2006) Electroanalysis 18(6):807–813

    Article  CAS  Google Scholar 

  37. Yang S, Li G, Yang R, Xia M, Qu L (2011) J Solid State Electrochem 15:1909–1918

    Article  CAS  Google Scholar 

  38. Zhang L, Shi Z, Lang Q (2011) J Solid State Electrochem 15:801–809

    Article  CAS  Google Scholar 

  39. Tsierkezos NG, Ritter U (2012) J Solid State Electrochem 16:2217–2226

    Article  CAS  Google Scholar 

  40. Yang H, Li Y, Liu Y, Zhang Y, Zhao Y, Zhao M (2015) J Solid State Electrochem 19:145–152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I.E. thanks Alexander von Humbold Foundation for supporting his research stay in Ilmenau. The authors would like to express their sincere gratitude to Petr Formánek (Leibniz-Institutfür Polymerforschung Dresden e. V., Nanostructured Materials, Dresden, Germany) for the assistance with the TEM and measurements and to Prof. Vessela Tsakova (Bulgarian Academy of Science, Institute of Physical Chemistry, Sofia, Bulgaria) and Dr. Henry Romanus (Technische Universität Ilmenau) for the fruitful discussions. V.-T.G. thanks the Thüringer Landgraduiertenförderung for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor Efimov or Adriana Ispas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimov, I., Gruia, VT., Rumiche, F. et al. An electrochemical quartz crystal microbalance study on adsorption of single walled carbon nanotubes onto poly[3,4-ethylenedioxythiophene] layers. J Solid State Electrochem 19, 2581–2589 (2015). https://doi.org/10.1007/s10008-015-2979-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2979-4

Keywords

Navigation