Journal of Solid State Electrochemistry

, Volume 19, Issue 9, pp 2581–2589 | Cite as

An electrochemical quartz crystal microbalance study on adsorption of single walled carbon nanotubes onto poly[3,4-ethylenedioxythiophene] layers

Original Paper

Abstract

Deposition by adsorption of single walled carbon nanotubes (SWCNTs) onto electrodeposited poly[3,4-ethylenedioxythiophene] (PEDOT) films is reported. Electrochemical quartz crystal microbalance (EQCM) measurements in dispersive mode reveal resonance frequency decrease as well as growth of acoustic resistance during the SWCNT deposition. These data were interpreted in terms of increasing of the roughness of the surface and the corresponding change of surface impedance. The thus in situ obtained estimates of size and irregularities agree with ex situ scanning electron microscopy data. Transmission electron microscopy was used to analyze the size and the morphology of the SWCNTs, which were mostly occurring as bundles of nanotubes rather than individual ones. Electroactivity of PEDOT and PEDOT-SWCNT films was studied with regard to the detection of dopamine.

Keywords

PEDOT electrodeposition SWCNT adsorption EQCM Dopamine 

Notes

Acknowledgments

I.E. thanks Alexander von Humbold Foundation for supporting his research stay in Ilmenau. The authors would like to express their sincere gratitude to Petr Formánek (Leibniz-Institutfür Polymerforschung Dresden e. V., Nanostructured Materials, Dresden, Germany) for the assistance with the TEM and measurements and to Prof. Vessela Tsakova (Bulgarian Academy of Science, Institute of Physical Chemistry, Sofia, Bulgaria) and Dr. Henry Romanus (Technische Universität Ilmenau) for the fruitful discussions. V.-T.G. thanks the Thüringer Landgraduiertenförderung for the financial support.

References

  1. 1.
    Rumiche F, Wang HH, Indacochea JE (2012) Sensors Actuats B Chem 163:97–106CrossRefGoogle Scholar
  2. 2.
    Barsan MM, Carvalho RC, Zhong Y, Sun X, Brett CMA (2012) Electrochim Acta 85:203–209CrossRefGoogle Scholar
  3. 3.
    Liu M, Wen Y, Li D, Yue R, Xu J, He H (2011) Sensors Actuators B Chem 159:277–285CrossRefGoogle Scholar
  4. 4.
    Liu M, Wen Y, Xu J, He H, Li D, Yue R, Liu G (2011) Anal Sci 27:477–482CrossRefGoogle Scholar
  5. 5.
    Xu G, Li B, Cui XT, Ling L, Luo X (2013) Sensors Actuators B Chem 188:405–410CrossRefGoogle Scholar
  6. 6.
    Lin K-C, Tsai T-H, Cheng S-M (2010) Biosens Bioelectron 26:608–614CrossRefGoogle Scholar
  7. 7.
    Gerwig R, Fuchsberger K, Schroeppel B, Link GS, Heusel G, Kraushaar U, Schuhmann W, Stett A, Stelzle M (2012) Front Neuroenerg 5(8):1–10Google Scholar
  8. 8.
    Badhulika S, Myung NV, Mulchandani A (2014) Talanta 123:109–114CrossRefGoogle Scholar
  9. 9.
    Peng C, Zhang S, Jewell D, Chen GZ (2008) Progr Nat Sci 18:777–788CrossRefGoogle Scholar
  10. 10.
    Snook GA, Kao P, Best AS (2011) J Power Sources 196:1–12CrossRefGoogle Scholar
  11. 11.
    Lota K, Khomenko V, Frackowiak E (2004) J Phys Chem Solid 65:295–301CrossRefGoogle Scholar
  12. 12.
    Peng C, Jin J, Chen GZ (2007) Electrochim Acta 53:525–537CrossRefGoogle Scholar
  13. 13.
    Wang J, Xu Y, Sun X, Li X, Du X (2008) J Solid State Electrochem 12:947–952CrossRefGoogle Scholar
  14. 14.
    Xiao Q, Zhou X (2003) Electrochim Acta 48:575–580CrossRefGoogle Scholar
  15. 15.
    Levi N, Levi MD, Aurbach D, Demadrille R, Pron A (2010) J Phys Chem C 114:16823–16831CrossRefGoogle Scholar
  16. 16.
    Snook GA, Chen GZ, Fray DJ, Huges M, Schaffer M (2004) J Electroanal Chem 568:135–142CrossRefGoogle Scholar
  17. 17.
    Sun X, Xu Y, Wang J (2012) J Solid State Electrochem 16:1781–1789CrossRefGoogle Scholar
  18. 18.
    Pieta P, Grodzka E, Winkler K, Venukadasula GM, D’Souza F (2008) Phys Stat Solids (b) 245(10):2292–2295CrossRefGoogle Scholar
  19. 19.
    Pieta P, Grodzka E, Winkler K, Warczak M, Sadkowski A, Zukowska GZ, Venukadasula GM, D’Souza F, Kutner W (2009) J Phys Chem B 113:6682–6691CrossRefGoogle Scholar
  20. 20.
    Pieta P, Venukadasula GM, D’Souza F, Kutner W (2009) J Phys Chem C 113:14046–14058CrossRefGoogle Scholar
  21. 21.
    Zheng L, Wang X, An H, Wang X, Yi L, Bai L (2011) J Solid State Electrochem 15:675–681CrossRefGoogle Scholar
  22. 22.
    Guo D-J, Li H-L (2005) J Solid State Electrochem 9:445–449CrossRefGoogle Scholar
  23. 23.
    Moore CE, Inzelt G (2015) J Solid State Electrochem 19:45–56CrossRefGoogle Scholar
  24. 24.
    Johannsmann D, QCM Modelling Tutorial, Clausthal, http://www2.pc.tu-clausthal.de/dj/software_en.shtml
  25. 25.
    Ispas A, Bund A (2014) Electrochemical quartz crystal microbalance, In: Encyclopedia of applied electrochemistry, Vol. 1, Springer, A - E. - New York, NY:pp 554-568Google Scholar
  26. 26.
    Aygun A, Buthker JW, Stephenson LD, Kumar A, Mahle TK, Gewirth AA (2012) J Electroanal Chem 684:47–52CrossRefGoogle Scholar
  27. 27.
    Hillman AR, Dong Q, Mohamoud MA, Efimov I (2010) Electrochim Acta 55:8142–8153CrossRefGoogle Scholar
  28. 28.
    Urbakh M, Daikhin L (1994) Phys Rev B 49:4866–4870CrossRefGoogle Scholar
  29. 29.
    Bandey HL, Hillman AR, Brown MJ, Martin SJ (1997) Faraday Discuss 107:105–121CrossRefGoogle Scholar
  30. 30.
    Hillman AR, Efimov I, Skompska M (2005) J Am Chem Soc 127(11):3817–3824CrossRefGoogle Scholar
  31. 31.
    Bund A, Schwitzgebel G (2000) Electrochim Acta 45(22-23):3703–3710CrossRefGoogle Scholar
  32. 32.
    Gruia V-T, Ispas A, Wilke M, Efimov I, Bund A (2014) Electrochim Acta 118:88–91CrossRefGoogle Scholar
  33. 33.
    Tsakova V, Milchev A, Schultze JW (1993) J Electroanal Chem 346:85–97CrossRefGoogle Scholar
  34. 34.
    Tsakova V, Milchev A (1991) Electrochim Acta 36:1579–1583CrossRefGoogle Scholar
  35. 35.
    Stoyanova A, Tsakova V (2010) J Solid State Electrochem 14:1947–1955CrossRefGoogle Scholar
  36. 36.
    Komsiyska L, Tsakova V (2006) Electroanalysis 18(6):807–813CrossRefGoogle Scholar
  37. 37.
    Yang S, Li G, Yang R, Xia M, Qu L (2011) J Solid State Electrochem 15:1909–1918CrossRefGoogle Scholar
  38. 38.
    Zhang L, Shi Z, Lang Q (2011) J Solid State Electrochem 15:801–809CrossRefGoogle Scholar
  39. 39.
    Tsierkezos NG, Ritter U (2012) J Solid State Electrochem 16:2217–2226CrossRefGoogle Scholar
  40. 40.
    Yang H, Li Y, Liu Y, Zhang Y, Zhao Y, Zhao M (2015) J Solid State Electrochem 19:145–152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Fakultät für Elektrotechnik und Informationstechnik, Fachgebiet Elektrochemie und GalvanotechnikTechnische Universität IlmenauIlmenauGermany
  2. 2.Centre for Biological EngineeringLoughborough UniversityLoughboroughUK
  3. 3.Sección Ingeniería MecánicaPontificia Universidad Católicadel PerúLimaPeru

Personalised recommendations