Skip to main content
Log in

Anode properties of Al2O3-added MgH2 for all-solid-state lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

All-solid-state lithium-ion batteries (LIBs) with aluminum oxide (Al2O3)-added magnesium hydride (MgH2), (100 − y)MgH2-yAl2O3 (y = 1, 5, 25 mol%) were fabricated, and their anode properties were investigated. Coulombic efficiency is increased by adding Al2O3. In addition, cycle properties are improved by adding Al2O3 as well. 27Al-magic angle spinning (MAS) nuclear magnetic resonance (NMR) and some other analyses were carried out to approach the mechanism of this additive, by which the coulombic efficiency and the cycle properties were improved. Although the niobium oxide (Nb2O5)-added MgH2 also showed the better kinetic properties compared with pristine MgH2 in our previous report, Nb2O5 should be well known as the best catalyst for hydrogen ab/desorption properties of MgH2. However, it is revealed that the hydrogen desorption temperature does not depend on Al2O3 contents. According to some detailed analyses, pentahedral-coordinated aluminum atom was successfully observed after Li insertion reaction by 27Al MAS NMR measurement. From the other experimental results, it is concluded that this pentahedral-coordinated aluminum atom could play an important role on the increasing coulombic efficiency and cycle properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Armand M, Tarascon JM (2008) Nature 451:652–657

    Article  CAS  Google Scholar 

  3. Takada K (2013) Acta Mater 61:759–770

    Article  CAS  Google Scholar 

  4. Oumellal Y, Rougier A, Nazri GA, Tarascon JM, Aymard L (2008) Nat Mater 7:916–921

    Article  CAS  Google Scholar 

  5. Oumellal Y, Rougier A, Tarascon JM, Aymard L (2009) J Power Sources 192:698–702

    Article  CAS  Google Scholar 

  6. Vigeholm B, Kjoller J, Larsen B (1980) J Less-Common Met 74:341–350

    Article  CAS  Google Scholar 

  7. Vigeholm B, Kjoller J, Larsen B, Pedersen AS (1983) J Less-Common Met 89:135–144

    Article  CAS  Google Scholar 

  8. Liang G, Huot J, Boily S, Van Neste A, Schulz R (1999) J Alloys Compd 292:247–252

    Article  CAS  Google Scholar 

  9. Zaluska A, Zaluski L, Ström-Olsen JO (1999) J Alloys Compd 288:217–225

    Article  CAS  Google Scholar 

  10. Oelerich W, Klassen T, Bormann R (2001) J Alloys Compd 315:237–242

    Article  CAS  Google Scholar 

  11. Hanada N, Ichikawa T, Fujii H (2005) J Phys Chem B 109:7188–7194

    Article  CAS  Google Scholar 

  12. Barkhordarian G, Klassen T, Bormann R (2003) Scr Mater 49:213–217

    Article  CAS  Google Scholar 

  13. Barkhordarian G, Klassen T, Bormann R (2004) J Alloys Compd 364:242–246

    Article  CAS  Google Scholar 

  14. Hanada N, Ichikawa T, Hino S, Fujii H (2006) J Alloys Compd 420:46–49

    Article  CAS  Google Scholar 

  15. Hanada N, Ichikawa T, Fujii H (2007) J Alloys Compd 446-447:67-71

  16. Levin I, Brandon D (1998) J Am Ceram Soc 81:1995–2012

    Article  CAS  Google Scholar 

  17. Kwak JH, Hu JZ, Kim DH, Szanyi J, Peden CHF (2007) J Catal 251:189–194

    Article  CAS  Google Scholar 

  18. Kwak JH, Hu J, Mei D, Yi C-W, Kim DH, Peden CHF, Allard LF, Szanyi J (2009) Science 325:1670–1673

    Article  CAS  Google Scholar 

  19. Düvel A, Romanova E, Sharifi M, Freude D, Wark M, Heitjans P, Wilkening M (2011) J Phys Chem C 115:22770–22780

    Article  Google Scholar 

  20. Ikeda S, Ichikawa T, Kawahito K, Hirabayashi K, Miyaoka H, Kojima Y (2013) Chem Commun 49:7174–7176

    Article  CAS  Google Scholar 

  21. Ikeda S, Ichikawa T, Yamaguchi S, Miyaoka H, Kojima Y (2014) J Jpn Inst Energy 93:926–930

    Article  CAS  Google Scholar 

  22. Kimura T, Miyaoka H, Ichikawa T, Kojima Y (2013) Int J Hydrogen Energy 38:13728–13733

    Article  CAS  Google Scholar 

  23. Lee MH, Cheng C-F, Heine V, Klinowski J (1997) Chem Phys Lett 265:673–676

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Ichikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, S., Ichikawa, T., Goshome, K. et al. Anode properties of Al2O3-added MgH2 for all-solid-state lithium-ion batteries. J Solid State Electrochem 19, 3639–3644 (2015). https://doi.org/10.1007/s10008-015-2959-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2959-8

Keywords

Navigation