Skip to main content
Log in

Controlled synthesis of NiCo2O4 nanowires and nanosheets on reduced graphene oxide nanosheets for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Two types of homogeneous NiCo2O4-NW/rGO composite and NiCo2O4-NS/rGO composite are synthesized via a facile and effective low-solution approach coupled with a simple post-annealing treatment. Importantly, the morphologies of NiCo2O4 can be easily controlled to be nanowires or nanosheets by using different hydrolyzing agents without using of templates, surfactant and stabilizer. These two different morphologies of composite are evaluated as electrodes for supercapacitors, and the NiCo2O4-NS/rGO exhibits good electrochemical performance. Compared with NiCo2O4-NW/rGO (i.e., 1,137.8 F g−1 at 1 A g−1 and 683.3 F g−1 at 15 A g−1), NiCo2O4-NS/rGO achieves much higher capacitance (i.e., 1,217.4 F g−1 at 1 A g−1 and 760 F g−1 at 15 A g−1) with excellent cycling stability of 94 % retention of specific capacitance after 1,000 cycles. The results show that these NiCo2O4/rGO composites are promising for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mai LQ, Tian XC, Xu X, Chang L, Xu L (2014) Chem Rev 114:11828–11862

    Article  CAS  Google Scholar 

  2. Zhang GH, Wang TH, Yu XZ, Zhang H, Duan HG, Lu BG (2013) Nano Energy 2:586–594

    Article  CAS  Google Scholar 

  3. Xie LJ, Li KX, Sun GH, Hu ZG, Zhang CM (2013) J Solid State Electrochem 17:55–61

    Article  CAS  Google Scholar 

  4. Lu Q, Chen JG, Xiao JQ (2013) Angew Chem Int Ed 52:1882–1889

    Article  CAS  Google Scholar 

  5. Wang X, Yan CY, Sumboja A, Lee PS (2014) Nano Energy 3:119–126

    Article  CAS  Google Scholar 

  6. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  7. Simon P, Gogotsi Y (2012) Acc Chem Res 46:1094–1103

    Article  Google Scholar 

  8. Wu ZS, Wang DW, Ren WC, Cheng HM (2010) Adv Funct Mater 20:3595–3602

    Article  CAS  Google Scholar 

  9. Wang B, Zhu T, Wu HB, Xu R, Chen JS, Lou XW (2012) Nanoscale 4:2145–2149

    Article  CAS  Google Scholar 

  10. Xu KB, Zou RJ, Li WY, Liu Q, Liu XJ, An L, Hu JQ (2014) J Mater Chem A 2:10090–10097

    Article  CAS  Google Scholar 

  11. Xiao J, Yang S (2012) J Mater Chem 22:12253–12262

    Article  CAS  Google Scholar 

  12. Wang CC, Chen HC, Lu SY (2014) Chem Eur J 20:517–523

    Article  CAS  Google Scholar 

  13. Kim T, Jung GJ, Yoo S, Suh KS, Ruoff RS (2013) ACS Nano 7:6899–6905

    Article  CAS  Google Scholar 

  14. Liu J (2014) Nat Nano 114:11828–11862

    Google Scholar 

  15. Liu J, Zhang LL, Wu HB, Lin JY, Shen ZX, Lou XW (2014) Energy Environ Sci 7:3709–3719

    Article  CAS  Google Scholar 

  16. Sun YQ, Wu Q, Shi GQ (2011) Energy Environ Sci 4:1113–1132

    Article  CAS  Google Scholar 

  17. Dam DT, Wang X, Lee JM (2014) ACS Appl Mater Interfaces 6:8246–8256

    Article  CAS  Google Scholar 

  18. Giri S, Ghosh D, Das CK (2014) Adv Funct Mater 24:1312–1324

    Article  CAS  Google Scholar 

  19. Wang LX, Deng D, Ng KYS (2013) J Mater Sci 48:6410–6417

    Article  CAS  Google Scholar 

  20. Zhao B, Song JS, Liu P, Xu WW, Fang T, Jiao Z, Zhang H, Jiang Y (2011) J Mater Chem 21:18792–18798

    Article  CAS  Google Scholar 

  21. Wang XW, Liu SQ, Wang HY, Tu FY, Fang D, Li YH (2012) J Solid State Electrochem 16:3593–3602

    Article  CAS  Google Scholar 

  22. She JF, Li XF, Li N, Ye MX (2014) Electrochim Acta 141:126–133

    Article  Google Scholar 

  23. Jiang H, Ma J, Li CZ (2012) Chem Commun 48:4465–4467

    Article  CAS  Google Scholar 

  24. Gao GX, Wu HB, Ding SJ, Liu LM, Lou XW (2014) Small 11:804–808

  25. Huang L, Chen DC, Ding Y, Feng S, Wang ZL, Liu M (2013) Nano Lett 13:3135–3139

    Article  CAS  Google Scholar 

  26. Cui B, Lin H, Li JB, Li X, Yang J, Tao J (2008) Adv Funct Mater 18:1440–1447

    Article  CAS  Google Scholar 

  27. An CH, Wang YJ, Huang Y, Xu Y, Jiao LF, Yuan HJ (2014) CrystEngComm 16:385–392

    Article  CAS  Google Scholar 

  28. Lu Y, Yan HL, Zhang DY, Lin J, Xue YM, Luo YS, Tang CC (2014) J Solid State Electrochem 18:3143–3152

    Article  CAS  Google Scholar 

  29. Wang HW, Hu ZA, Chang YQ, Chen YL, Wu HY, Zhang ZY, Yang YY (2011) J Mater Chem 21:10504–10511

    Article  CAS  Google Scholar 

  30. He GY, Wang L, Chen HQ, Sun X, Wang X (2013) Mater Lett 98:164–167

    Article  CAS  Google Scholar 

  31. Wang X, Yan CY, Sumboja A, Lee PS (2014) J Nanosci Nanotechnol 14:7104–7110

    Article  CAS  Google Scholar 

  32. Wang L, Wang XH, Xiao XP, Xu FG, Sun YJ, Li Z (2013) Electrochim Acta 111:937–945

    Article  CAS  Google Scholar 

  33. Shen LF, Che Q, Li HS, Zhang XG (2014) Adv Funct Mater 24:2630–2637

    Article  CAS  Google Scholar 

  34. Wang HW, Wang XF (2013) ACS Appl Mater Interfaces 5:6255–6260

    Article  CAS  Google Scholar 

  35. Xu S, Wang ZL (2011) Nano Res 4:1013–1098

    Article  CAS  Google Scholar 

  36. Chen Y, Zhuo M, Deng J, Xu Z, Li Q, Wang T (2014) J Mater Chem A 2:4449–4456

    Article  CAS  Google Scholar 

  37. Xu R, Zeng HC (2003) J Phys Chem B 107:12643–12649

    Article  CAS  Google Scholar 

  38. Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LL, Wei F (2012) Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  39. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Ruoff RS (2007) Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  40. Wang HL, Gao QM, Jiang LP (2011) Small 7:2454–2459

    CAS  Google Scholar 

  41. Guan C, Liu JP, Cheng CW, Li HX, Li XL, Zhou WW, Zhang H, Fan HJ (2011) Energy Environ Sci 4:4496–4499

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was granted financial support from the National Natural Science Foundation of China (no. 31400811) and Doctoral Research Fund of Southwest University of Science and Technology (no. 12zx7131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yatang Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, H., Luo, H. et al. Controlled synthesis of NiCo2O4 nanowires and nanosheets on reduced graphene oxide nanosheets for supercapacitors. J Solid State Electrochem 19, 3309–3317 (2015). https://doi.org/10.1007/s10008-015-2940-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2940-6

Keywords

Navigation