Skip to main content
Log in

Comparison of ferrite nanoparticles obtained electrochemically for catalytical reduction of hydrogen peroxide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ferrites of iron, cobalt, and nickel were used as a non-enzymatic sensor for detection of hydrogen peroxide. X-ray diffraction (XRD) and transmission electron microscopy revealed that the nanoparticles obtained by electrochemical route and varying the parameters synthesis show similar size of around 20 nm and a relation metal/iron equal to 1/2. The effect of pH, temperature, amount of nanoparticles, and potential has been studied to obtain the best sensor properties in terms of sensitivity and linear response. The mechanism has been attributed to the oxidation of Fe2+, Co2+, and Ni2+ in the octahedral position of the spinel that enhances the catalytic reduction of hydrogen peroxide. The best sensor has been obtained with magnetite (iron ferrite) with a detection limit of 7.3 × 10−6 M and a sensitivity of 4.0 × 10−4 μA/M. The magnetite was also applied to determine hydrogen peroxide in commercial contact lens cleaner Novoxy® with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin C-Y, Lai Y-H, Balamurugan A et al (2010) Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide. Talanta 82:340–347

    Article  CAS  Google Scholar 

  2. Gubitz G, Van Zoonen P, Gooijer C et al (1985) Immobilized fluorophores in dynamic chemiluminescence detection of hydrogen peroxide. Anal Chem 57:2071–2074

    Article  CAS  Google Scholar 

  3. Chen W, Li B, Xu C, Wang L (2009) Chemiluminescence flow biosensor for hydrogen peroxide using DNAzyme immobilized on eggshell membrane as a thermally stable biocatalyst. Biosens Bioelectron 24:2534–2540

    Article  CAS  Google Scholar 

  4. Matsubara C, Kawamoto N, Takamura K (1992) Oxo[5, 10, 15, 20-tetra(4-pyridyl)porphyrinato]titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 117:1781

    Article  CAS  Google Scholar 

  5. Yalçıner F, Çevik E, Senel M, Baykal A (2011) Development of an amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto nickel ferrite nanoparticle-chitosan composite. Nano-Micro Lett 3:91–98

    Article  Google Scholar 

  6. Uzun K, Çevik E, Şenel M et al (2010) Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles. J Nanoparticle Res 12:3057–3067

    Article  CAS  Google Scholar 

  7. Paczosa-Bator B, Migdalski J, Lewenstam A (2006) Conducting polymer films as model biological membranes. Electrochim Acta 51:2173–2181

    Article  CAS  Google Scholar 

  8. Yi X, Huang-Xian J, Hong-Yuan C (2000) Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Anal Biochem 278:22–28

    Article  CAS  Google Scholar 

  9. Şenel M, Abasıyanık MF (2010) Construction of a novel glucose biosensor based on covalent immobilization of glucose oxidase on poly(glycidyl methacrylate-co-vinylferrocene). Electroanalysis 22:1765–1771

    Article  Google Scholar 

  10. Qian L, Yang X (2006) Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta 68:721–727

    Article  CAS  Google Scholar 

  11. Yang W, Zhou X, Zheng N et al (2011) Electrochemical biosensors utilizing the electron transfer of hemoglobin immobilized on cobalt-substituted ferrite nanoparticles–chitosan film. Electrochim Acta 56:6588–6592

    Article  CAS  Google Scholar 

  12. Yardımcı FS, Şenel M, Baykal A (2012) Amperometric hydrogen peroxide biosensor based on cobalt ferrite–chitosan nanocomposite. Mater Sci Eng C 32:269–275

    Article  Google Scholar 

  13. Lin MS, Tseng TF (1998) Chromium(III) hexacyanoferrate(II)-based chemical sensor for the cathodic determination of hydrogen peroxide. Analyst 123:159–163

    Article  CAS  Google Scholar 

  14. Ye D, Xu Y, Luo L et al (2012) A novel nonenzymatic hydrogen peroxide sensor based on LaNi0.5Ti0.5O3/CoFe2O4 modified electrode. Colloids Surf B: Biointerfaces 89:10–14

    Article  CAS  Google Scholar 

  15. Cheng Y, Zheng Y, Wang Y et al (2005) Synthesis and magnetic properties of nickel ferrite nano-octahedra. J Solid State Chem 178:2394–2397

    Article  CAS  Google Scholar 

  16. Yang JM, Tsuo WJ, Yen FS (1999) Preparation of ultrafine nickel ferrite powders using mixed Ni and Fe tartrates. J Solid State Chem 145:50–57

    Article  CAS  Google Scholar 

  17. Musat Bujoreanu V, Diamandescu L, Brezeanu M (2000) On the structure of manganese ferrite powder prepared by coprecipitation from MnO2 and FeSO4 · 7H2O. Mater Lett 46:169–174

    Article  Google Scholar 

  18. Mazario E, Sánchez-Marcos J, Menéndez N et al (2014) One-pot electrochemical synthesis of polydopamine coated magnetite nanoparticles. RSC Adv 4:48353–48361

    Article  CAS  Google Scholar 

  19. Galindo R, Menendez N, Crespo P et al (2014) Comparison of different methodologies for obtaining nickel nanoferrites. J Magn Magn Mater 361:118–125

    Article  CAS  Google Scholar 

  20. Cabrera L, Gutierrez S, Menendez N et al (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441

    Article  CAS  Google Scholar 

  21. Mazario E, Menendez N, Herrasti P, et al. (2013) Magnetic hyperthermia properties of electrosynthesized cobalt ferrite nanoparticles J Phys Chem C 17:11405–11411

  22. Jia W, Guo M, Zheng Z et al (2009) Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode: toward H2O2 detection. J Electroanal Chem 625:27–32

    Article  CAS  Google Scholar 

  23. Lin MS, Leu HJ (2005) A Fe3O4-based chemical sensor for cathodic determination of hydrogen peroxide. Electroanalysis 17:2068–2073

    Article  CAS  Google Scholar 

  24. Zhang H-L, Lai G-S, Han D-Y, Yu A-M (2008) An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres. Anal Bioanal Chem 390:971–977

    Article  CAS  Google Scholar 

  25. Kaçar C, Dalkiran B, Erden PE, Kiliç E (2014) An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode. Appl Surf Sci 311:139–146

    Article  Google Scholar 

  26. Kwan WP, Voelker BM (2003) Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Sci Technol 37:1150–1158

    Article  CAS  Google Scholar 

  27. Albuquerque AS, Tolentino MVC, Ardisson JD et al (2012) Nanostructured ferrites: structural analysis and catalytic activity. Ceram Int 38:2225–2231

    Article  CAS  Google Scholar 

  28. Wolfenstine J, Allen J (2005) Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sources 142:389–390

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the MINECO (Project MAT2012-37109-C02-02) for financial support. A. Muñoz-Bonilla also thanks the MINECO for her Ramon y Cajal contract and J. Jaime-González for his Conacyt grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Herrasti.

Additional information

This manuscript is for the Special Issue on the occasion of Prof. Jose Zagal 65th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaime-González, J., Mazario, E., Menendez, N. et al. Comparison of ferrite nanoparticles obtained electrochemically for catalytical reduction of hydrogen peroxide. J Solid State Electrochem 20, 1191–1198 (2016). https://doi.org/10.1007/s10008-015-2938-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2938-0

Keywords

Navigation