Skip to main content
Log in

Novel paste electrodes based on phosphonium salt room temperature ionic liquids for studying the redox properties of insoluble compounds

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new carbon paste electrode is described, which contains the room temperature ionic liquid (RTIL) tri(tert-butyl)(dodecyl)phosphonium tetrafluoroborate as binder. The advantages of this electrode are a high conductivity, very wide electrochemical window (5.6 V from 2.7 to −2.9 V, one of the widest ever reported for RTILs), stability in time, and reproducibility. This RTIL-carbon paste electrode (CPE) allows determining the current-voltage characteristics of redox-active compounds. Thus, the newly synthesized insoluble compound poly-tris(μ2-1,1′-ferrocenediyl-phenylhydrophosphinato-phenylphosphinato)-iron(III) tetrahydrofuran solvate {μ2-[FeII5-C5H4–P(PhOO)(η5-C5H4–P(PhOOH))]3FeIII}·THF was studied, and a quasi-reversible three-electron oxidation could be observed at a potential more positive than that of ferrocene. A comparison of voltammograms on the paraffin-CPE and on the novel RTIL-CPE shows the advantages of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Budnikov GK, Evtyugin GA, Budnikova YG, Al’fonsov VA (2008) J Anal Chem 63:2–12

    Article  CAS  Google Scholar 

  2. Gittins DI, Bethell D, Schiffrin DJ, Nichols RJ (2000) Nature 408:67–69

    Article  CAS  Google Scholar 

  3. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science 286:1550–1552

    Article  CAS  Google Scholar 

  4. Bredas JL (2014) Mater Horiz 1:17–19

    Article  CAS  Google Scholar 

  5. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) J Am Chem Soc 115:6382–6390

    Article  CAS  Google Scholar 

  6. Li Z, Leed NA, Dickson-Karn NM, Dunbar KR, Turro C (2014) Chem Sci 5:727–737

    Article  CAS  Google Scholar 

  7. Gluyas JB, Boden AJ, Eaves SG, Yu H, Low PJ (2014) Dalton Trans 43:6291–6294

    Article  CAS  Google Scholar 

  8. Hirai K, Uehara H, Kitagawa S, Furukawa S (2012) Dalton Trans 41:3924–3927

    Article  CAS  Google Scholar 

  9. Scholz F, Schröder U, Gulaboski R, Doménech-Carbó A (2015) Springer:329p

  10. Kuwana T, French WG (1964) Anal Chem 36:241–242

    Article  CAS  Google Scholar 

  11. Jiang C, Yang T, Jiao K, Gao HW (2008) Electrochim Acta 53:2917–2924

    Article  CAS  Google Scholar 

  12. Liu H, He P, Li Z, Sun C, Shi L, Liu Y, Zhu G, Li J (2005) Electrochem Comm 7:1357–1363

    Article  CAS  Google Scholar 

  13. Maleki N, Safavi A, Tajabadi F (2006) Anal Chem 78:3820–3826

    Article  CAS  Google Scholar 

  14. Liu HT, He P, Li ZY, Sun CY, Shi LH, Liu Y, Zhu GY, Li JH (2005) Electrochem Comm 7:1357–1360

    Article  CAS  Google Scholar 

  15. Li Y, Wang H, Liu X, Guo L, Ji X, Wang L, Tian D, Yang X (2014) J Electroanal Chem 719:35–40

    Article  CAS  Google Scholar 

  16. Shul G, Sirieix-Plenet J, Gaillon L, Opallo M (2006) Electrochem Comm 8:1111–1114

    Article  CAS  Google Scholar 

  17. Safavi A, Maleki N, Moradlou O, Tajabadi F (2006) Anal Biochem 359:224–229

    Article  CAS  Google Scholar 

  18. Safavi A, Maleki N, Honarasa F, Tajabadi F, Sedaghatpour F (2007) Electroanalysis 19:582–586

    Article  CAS  Google Scholar 

  19. Maleki N, Safavi A, Tajabadi F (2007) Electroanalysis 19:2247–2250

    Article  CAS  Google Scholar 

  20. Safavi A, Maleki N, Tajabadi F (2007) Analyst 132:54–58

    Article  CAS  Google Scholar 

  21. Zhang Y, Zheng JB (2007) Electrochim Acta 52:7210–7216

    Article  CAS  Google Scholar 

  22. Musameh MM, Kachoosangi RT, Xiao L, Russell A, Compton RG (2008) Biosens Bioelectron 24:87–92

    Article  CAS  Google Scholar 

  23. Zhang XZ, Jiao K, Wang XL (2008) Electroanalysis 20:1361–1366

    Article  CAS  Google Scholar 

  24. Buzzeo MC, Hardacre C, Compton RG (2006) ChemPhysChem 7:176–180

    Article  CAS  Google Scholar 

  25. Galinґski M, Lewandowski A, Ste˛pniak I (2006) Electrochim Acta 51:5567–5580

    Article  Google Scholar 

  26. Pozo-Gonzalo C, Virgilio C, Yan Y, Howlett PC, Byrne N, MacFarlane DR, Forsyth M (2014) Electrochem Comm 38:24–27

    Article  CAS  Google Scholar 

  27. Rickert PG, Antonio MR, Firestone MA, Kubatko KA, Szreder T, Wishart JF, Dietz ML (2007) Dalton Trans 5:529–531

    Article  Google Scholar 

  28. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  29. Staveren DR, Metzler-Nolte N (2004) Chem Rev 104:5931–5986

    Article  Google Scholar 

  30. Whittall IR, McDonagh AM, Humphery MJ (1998) Adv Orgamomet Chem 42:291–362

    Article  CAS  Google Scholar 

  31. Deschenaux R, Schweisssguth M, Vilches MT (1999) Organometallics 18:5553–5559

    Article  CAS  Google Scholar 

  32. Tarraga A, Molina P, Curiel D, Velaso MD (2002) Tetrahedron Lett 43:8453–8457

    Article  CAS  Google Scholar 

  33. Barlow S, Marder RS (2000) Chem Comm 17:1555–1562

    Article  Google Scholar 

  34. Horikoshi R, Nambu C, Mochida T (2003) Inorg Chem 42:6868–6875

    Article  CAS  Google Scholar 

  35. Dumazet I, Beer DP (1999) Tetrahedron Lett 40:785–788

    Article  CAS  Google Scholar 

  36. Conradie J, Lamprecht GJ, Otto S, Swarts JC (2002) Inorg Chim Acta 328:191–203

    Article  CAS  Google Scholar 

  37. Brucker. APEX2 software suite for crystallographic programs (2009) Brucker AXS, Inc., Madison, WI, USA

  38. Brucker. Area detector control and integration software.Version 5.x. In: SMART and SAINT. Madison, Wisconsin (USA) (1996) Brucker Analytical X-ray Instruments Inc

  39. Sheldrick GM (1997) SHELX-97: programs for crystal structure analysis, Göttingen, Germany

  40. Sheldrick GM (2008) Acta Crystallogr A64:112

    Article  Google Scholar 

  41. Farrugia LJ (2012) J Appl Cryst 45:849–854

    Article  CAS  Google Scholar 

  42. Shekurov RP, Miluykov VA, Islamov DR, Krivolapov DB, Kataeva ON, Gerasimova TP, Katsyuba SA, Nasybullina GR, Yanilkin VV, Sinyashin OG (2014) J Organomet Chem 766:40–48

  43. Ermolaev V, Miluykov V, Rizvanov I, Krivolapov D, Zvereva E, Katsyuba S, Sinyashin O, Schmutzler R (2010) Dalton Trans 39:5564–5571

    Article  CAS  Google Scholar 

  44. Gritzner G (1990) Pure Appl Chem 62:1839–1868

    Article  CAS  Google Scholar 

  45. Tsierkezos NG (2007) J Solution Chem 36:289–302

    Article  CAS  Google Scholar 

  46. Zanello P, Cinquantini A, Mangani S, Opromolla G, Pardi L, Janiak C, Rausch MD (1994) J Organomet Chem 471:171–177

    Article  CAS  Google Scholar 

  47. Lewandowski A, Waligora L, Galinski M (2009) Electroanalysis 21:2221–2227

    Article  CAS  Google Scholar 

  48. Rogers EI, Silvester DS, Poole DL, Aldous L, Hardacre C, Compton RG (2008) J Phys Chem C 112:2729–2735

    Article  CAS  Google Scholar 

  49. Kolthoff IM, Thomas FG (1965) J Phys Chem 69:3049–3058

    Article  CAS  Google Scholar 

  50. Zhu MJ, Sun J, Shi YC, Yan СО (2007) Synth React Inorg Met Org Nano-Met Chem 37:633–637

    CAS  Google Scholar 

  51. Laoire CO, Plichta E, Hendrickson M, Mukerjee S, Abraham KM (2009) Electrochim Acta 54:6560–6564

    Article  CAS  Google Scholar 

  52. Koepp HM, Wendt H, Strehlow HZ (1960) Elektrochemistry 64:483–491

    CAS  Google Scholar 

  53. Gagné RR, Koval CA, Lisensky GC (1980) Inorg Chem 19:2854–2855

    Article  Google Scholar 

  54. Daschbach J, Blackwood D, Pons JW, Pons S (1987) J Electroanal Chem Interfacial Electrochem 237:269–273

    Article  CAS  Google Scholar 

  55. Pickett CJ (1985) J Chem Soc Chem Comm 6:323–326

    Article  Google Scholar 

  56. Pavlishchuk VV, Addison AW (2000) Inorg Chim Acta 298:97–102

    Article  CAS  Google Scholar 

  57. Bohling DA, Evans JF, Mann KR (1982) Inorg Chem 21:3546–3551

    Article  CAS  Google Scholar 

  58. Sinclair L, Mondal JV, Uhrhammer D, Schultz FA (1998) Inorg Chim Acta 278:1–5

    Article  CAS  Google Scholar 

  59. Fraser C, Bosnich B (1994) Inorg Chem 33:338–346

    Article  CAS  Google Scholar 

  60. Thomas KRJ, Tharmaraj P, Chandrasekhar V, Bryan CD, Cordes AW (1994) Inorg Chem 33:5382–5390

    Article  CAS  Google Scholar 

  61. Huber B, Roling B (2011) Electrochim Acta 56:6569–6572

    Article  CAS  Google Scholar 

  62. Snook GA, Best AS, Pandolfo AG, Hollenkamp AF (2006) Electrochem Comm 8:1405–1411

    Article  CAS  Google Scholar 

  63. Brunschwig BS, Creutz C, Sutin N (2002) Chem Soc Rev 31:168–184

    Article  CAS  Google Scholar 

  64. Low PJ (2005) Dalton Trans 17:2821–2824

    Article  Google Scholar 

  65. Ceccon A, Santi S, Orian L, Bisello A (2004) Coord Chem Rev 248:683–724

    Article  CAS  Google Scholar 

  66. Aguirre-Etcheverry P, O’Hare D (2010) Chem Rev 110:4839–4864

    Article  CAS  Google Scholar 

  67. Lohan M, Ecorchard P, Ruffer T, Justaud F, Lapinte C, Lang H (2009) Organometallic 28:1878–1890

    Article  CAS  Google Scholar 

  68. Mucke P, Linseis M, Zális S, Winter RF (2011) Inorg Chim Acta 374:36–50

    Article  Google Scholar 

  69. Bunz UHF (2000) Chem Rev 100:1605–1644

    Article  CAS  Google Scholar 

  70. Bruce MI (1998) Chem Rev 98:2797–2858

    Article  CAS  Google Scholar 

  71. Barlow S, O’Hare D (1997) Chem Rev 97:637–669

    Article  CAS  Google Scholar 

  72. Jones SC, Barlow S, O’Hare D (2005) Chem Eur J 11:4473–4481

    Article  CAS  Google Scholar 

  73. Olivier C, Kim B, Touchard D, Rigaut S (2008) Organometallic 27:509–518

    Article  CAS  Google Scholar 

  74. Sato M, Fukui K (2007) Synth Met 157:619–626

    Article  CAS  Google Scholar 

  75. Caballero A, Lloveras V, Curiel D, Tárraga A, Espinosa A, García R, Vidal-Gancedo J, Rovira C, Wurst K, Molina P, Veciana J (2007) Inorg Chem 46:825–838

    Article  CAS  Google Scholar 

  76. Robertson N, McGowan GA (2003) Chem Soc Rev 32:96–103

    Article  CAS  Google Scholar 

  77. Levanda C, Bechgaard K, Cowan DO (1976) J Org Chem 16:2700–2704

    Article  Google Scholar 

  78. Connelly NG, Geiger WE (1996) Chem Rev 96:877–910

    Article  CAS  Google Scholar 

  79. Pfaff U, Hildebrandt A, Schaarschmidt D, Hahn T, Liebing S, Kortus J, Lang H (2012) Organometallic 31:6761–6771

    Article  CAS  Google Scholar 

  80. Tahara K, Akita T, Katao S, Kikuchi J (2014) Dalton Trans 43:1368–1379

    Article  CAS  Google Scholar 

  81. Fourie E, Marthinus J, Rensburg J, Swarts JC (2014) J Organomet Chem 754:80–87

    Article  CAS  Google Scholar 

  82. Zakharov BA, Kolesov BA, Boldyreva EV (2011) Phys Chem Chem Phys 13:13106–13116

    Article  CAS  Google Scholar 

  83. Novak A (1974) Struct Bonding 18:177–216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Russian Science Foundation No. 14-23-00016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Khrizanforov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrizanforov, M.N., Arkhipova, D.M., Shekurov, R.P. et al. Novel paste electrodes based on phosphonium salt room temperature ionic liquids for studying the redox properties of insoluble compounds. J Solid State Electrochem 19, 2883–2890 (2015). https://doi.org/10.1007/s10008-015-2901-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2901-0

Keywords

Navigation