Skip to main content
Log in

A new electrode for acid-base titration based on poly(copper phthalocyanine)

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new electrode based on poly(copper phthalocyanine) (poly(CuPc)) microparticles attached to gold is characterized and introduced as a simple, robust, and cheap tool for potentiometric acid-base titrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Cremer M (1906) Über die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von Polyphasischen Elektrolytketten. Z Biol 47:562

    CAS  Google Scholar 

  2. Bach H, Baucke F, Krause D (eds) (2011) Electrochemistry of glasses and glass melts, including glass electrodes. Springer, Berlin

    Google Scholar 

  3. Baucke FGK (2011) Fundamental and applied electrochemical at an industrial laboratory. An overview. J Solid State Electrochem 15:23–46

    Article  CAS  Google Scholar 

  4. Scholz F (2011) Nikolsky’s ion exchange theory versus Baucke’s dissociation mechanism of the glass electrode. J Solid State Electrochem 15:67–68

    Article  CAS  Google Scholar 

  5. Bates RG (1973) Determination of pH—theory and practise. Wiley, New York, pp 280–294

    Google Scholar 

  6. Kahlert H (2010) Potentiometry. In: Scholz F (ed) Electroanalytical methods. Guide to experiments and applications. 2nd edn. Springer, Berlin, Heidelberg pp 237-256

  7. Wen Y, Wang X (2014) Characterization and application of a metallic tungsten electrode for potentiometric pH measurements. J Electroanal Chem 45:714–715

    Google Scholar 

  8. Fog A, Buck RP (1984) Electronic semiconducting oxides as pH sensors. Sensors Actuators 5:137–146

    Article  CAS  Google Scholar 

  9. Pungor E, Szepesváry É (1972) Potentiometric titration of acids and bases with graphite membrane electrodes in aqueous and non-aqueous solutions. Period Polytech 16:326–329

    Google Scholar 

  10. Regisser F, Lavoie M-A, Champagne GY, Bélanger D (1996) Randomly oriented graphite electrode. 1. Effect of electrochemical pretreatment on the electrochemical behavior and chemical composition of the electrode. J Electroanal Chem 415:47–54

    Article  CAS  Google Scholar 

  11. Korostynska O, Arshak K, Gill E, Arshak A (2007) Review on the state-of-the-art in polymer based pH sensors. Sensors 2007(7):3027–3042

    Article  Google Scholar 

  12. Lewenstam A, Bobacka J, Ivaska A (1994) Mechanism of ionic and redox sensitivity of p-type conducting polymers: part 1. Theory J Electroanal Chem 368:23–31

    Article  CAS  Google Scholar 

  13. Migdalski J, Blaz T, Lewenstam A (1996) Conducting polymer-based ion-selective electrodes. Anal Chim Acta 322:141–149

    Article  CAS  Google Scholar 

  14. Borsos K, Inzelt G (2015) Electrochemical and nanogravimetric studies of poly(copper phthalocyanine) microparticles immobilized on gold in aqueous solutions. J Solid State Electrochem. doi:10.1007/s10008-015-2770-6

    Google Scholar 

  15. Kahlert H, Scholz F (2013) Acid-base diagrams. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  16. Leznoff CC, Lever APB (eds) Phthalocyanines: properties and applications. VCH Publ., New York, 1989-1996, vols. 1-4

  17. Zagal J, Bindra P, Yeager E (1980) A mechanistic study of O2 reduction on water-soluble phthalocyanines adsorbed on graphite electrodes. J Electrochem Soc 127:1506–1517

    Article  CAS  Google Scholar 

  18. Canete P, Silva F, Zagal JH (2014) Electrocatalytic activity for O2 reduction of unsubstituted and perchlorinated iron phthalocyanines adsorbed on amino-terminated multiwalled carbon nanotubes deposited on glassy carbon electrodes. J Chilean Chem Soc 59:2529–2530

    Article  CAS  Google Scholar 

  19. Zagal JH, Griveau S, Silva F, Nyokong T, Bedioui F (2010) Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord Chem Rev 254:2755–2791

    Article  CAS  Google Scholar 

  20. Caro CA, Zagal JH, Bedioui F (2003) Electrocatalytic activity of substituted metallophthalocyanines adsorbed on vitreous carbon electrode for nitric oxide oxidation. J Electrochem Soc 150:E95–E103

    Article  CAS  Google Scholar 

  21. Komorsky-Lovrić S (1995) Voltammetry of microcrystals of cobalt and manganese phthalocyanines. J Electroanal Chem 397(1-2):211–215

    Article  Google Scholar 

  22. Brown RJC, Brett DJL, Kucernak ARJ (2009) An electrochemical quartz crystal microbalance study of platinum phthalocyanine thin films. J Electroanal Chem 633:339–346

    Article  CAS  Google Scholar 

  23. Gaffo L, Goncalves D, Faria RC, Moreira WC, Oliveira ON Jr (2005) Spectroscopic, electrochemical, and microgravimetric studies on palladium phthalocyanine film. J Porphyrins Phthalocyanines 9(1):16–21

    Article  CAS  Google Scholar 

  24. Arici M, Arican D, Lütfi Ugur A, Erdogmus A, Koca A (2013) Electrochemical and spectroelectrochemical characterization of newly synthesized manganese, cobalt, iron and copper phthalocyanines. Electrochim Acta 87:554–566

    Article  CAS  Google Scholar 

  25. Akinbulu IA, Ozoemena KI, Nyokong T (2011) Formation, surface characterization, and electrocatalytic application of self-assembled monolayer films of tetra-substituted manganese, iron, and cobalt benzylthio phthalocyanine complexes. J Solid State Electrochem 15(10):2239–2251

    Article  CAS  Google Scholar 

  26. Nemes Á, Moore CE, Inzelt G (2013) Electrochemical and nanogravimetric studies of palladium phthalocyanine microcrystals. J Serb Chem Soc 78:2017–2037

    Article  CAS  Google Scholar 

  27. Nemes Á, Inzelt G (2014) Electrochemical and nanogravimetric studies of iron phthalocyanine microparticles immobilized on gold in acidic and neutral media. J Solid State Electrochem 18:3327–3337

    Article  CAS  Google Scholar 

  28. Reis RM, Valim RB, Rocha RS, Lima AS, Castro PS, Bertotti M, Lanza MRV (2014) The use of copper and cobalt phthalocyanines as electrocatalysts for the oxygen reduction reaction in acid medium. Electrochim Acta 139:1–6

    Article  CAS  Google Scholar 

  29. Moraes FC, Mascaro LH, Machado SAS, Brett CMA (2010) Direct electrochemical determination of glyphosate at copper phthalocyanine/multiwalled carbon nanotube film electrodes. Electroanalysis 22:1586–1591

    CAS  Google Scholar 

  30. Meier H, Albrect W, Zimmerhackl E (1985) Photoconductivity of copper phthalocyanine. Polym Bull 13:43–50

    Article  CAS  Google Scholar 

  31. Su JL, Xue MZ, Ma N, Sheng QR, Zhang Q, Liu YG (2009) Dissolution of copper phthalocyanine and fabrication its nano-structure film. Sci China Ser B-Chem 52:911–915

    Article  CAS  Google Scholar 

  32. Raïssi M, Vignau L, Ratier B (2014) Enhancing the short-circuit current, efficiency of inverted organic solar cells using tetra sulfonic copper phthalocyanine (TS-CuPc) as electron transporting layer. Org Electron: Phys Mater Appl 15:913–919

    Article  Google Scholar 

  33. Sokolova TN, Lomova TN, Klueva ME, Suslova EE, Mayzlish VE, Shaposhnikov GP (2000) Structure-stability relationships of phthalocyanine copper complexes. Molecules 5:775–785

    Article  CAS  Google Scholar 

  34. Ogunsipe AO, Idowu MA, Ogunbayo TB, Akinbulu IA (2012) Protonation of some non-transition metal phthalocyanines-spectral and photophysicochemical consequences. J Porphyrins Phthalocyanines 16:885–894

    Article  CAS  Google Scholar 

  35. Srivasta KP, Kumar A (2001) UV spectral studies in protonation of Cu-phthalocyanine and phthalocyanine in sulphuric acid-solvent. Asian J Chem 13:1539–1543

    Google Scholar 

  36. Inzelt G (2012) Conducting polymers—a new era in electrochemistry. 2nd edn. In: Scholz F (ed) Monographs in electrochemistry. Springer, Heidelberg Berlin

    Google Scholar 

  37. Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin, Heidelberg, New York, p 114

    Google Scholar 

  38. Chambers JQ (1974) Electrochemistry of quinones. In: Patai S (ed) The chemistry of quinonoid compounds, vol 2. Wiley, New York

    Google Scholar 

  39. Cisternas R, Kahlert H, Wulff H, Scholz F (2015) Personal communication

Download references

Acknowledgments

A financial support of the National Scientific Research Fund (OTKA K100149) is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Inzelt.

Additional information

This paper is dedicated to Professor José H. Zagal on the occasion of his 65th birthday with the appreciation of his outstanding contribution to the development of electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borsos, K., Inzelt, G. A new electrode for acid-base titration based on poly(copper phthalocyanine). J Solid State Electrochem 20, 1215–1222 (2016). https://doi.org/10.1007/s10008-015-2899-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2899-3

Keywords

Navigation