Skip to main content
Log in

Characterization of electrical properties of n-conducting barium titanate as a function of dc-bias and ac-voltage amplitude by application of impedance spectroscopy

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrical properties of bulk and grain boundaries of donor-doped barium titanate ceramics have been characterized as a function of temperature (50–350 °C) and voltage load (up to 140 V) by application of impedance spectroscopy. Both the grain boundary resistivities and the steepness of the R-T characteristics are diminished significantly with increasing voltage load. While the grain boundary resistances are strongly affected by the applied electric field, the grain boundary capacitance is almost independent of the dc-bias. The non-linearity of the resistivity of n-conducting BaTiO3 has been investigated in detail by impedance spectroscopy as a function of dc-bias and a small ac-voltage signal as well as impedance measurements with high ac-voltage amplitudes (zero bias). The non-linear current response to high ac-voltage amplitudes at low frequencies (0.01 Hz) has been determined experimentally and analyzed by means of fast Fourier transform (FFT) as well as Lissajous analyses. Moreover, a finite element model (FEM) has been developed for the simulation of the ac-current response. The FEM calculations are in close agreement with the experimentally determined data for the variation of the grain boundary resistance with ac-voltage amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Preis W, Sitte W (2015) Electrical properties of grain boundaries in interfacially controlled functional ceramics. J Electroceram. doi:10.1007/s10832-014-9972-7

    Google Scholar 

  2. Heywang W (1964) J Am Ceram Soc 47:484–490

    Article  CAS  Google Scholar 

  3. Jonker GH (1964) Solid State Electron 7:895–903

    Article  CAS  Google Scholar 

  4. Kulwicki BM, Purdes AJ (1970) Ferroelectrics 1:253–263

    Article  Google Scholar 

  5. Preis W, Bürgermeister A, Sitte W, Supancic P (2004) Solid State Ionics 173:69–75

    Article  CAS  Google Scholar 

  6. Preis W, Sitte W (2006) Solid State Ionics 177:2549–2553

    Article  CAS  Google Scholar 

  7. Preis W, Sitte W (2011) J Electroceram 27:83–88

    Article  CAS  Google Scholar 

  8. Daniels J, Wernicke R (1976) Philips Res Rep 31:544–559

    CAS  Google Scholar 

  9. Preis W (2009) Monatsh Chem 140:1059–1068

    Article  CAS  Google Scholar 

  10. Frömling T, Hou J, Preis W, Sitte W, Hutter H, Fleig J (2011) J Appl Phys 110:043531

    Article  Google Scholar 

  11. Morrison FD, Coates AM, Sinclair DC, West AR (2001) J Electroceram 6:219–232

    Article  CAS  Google Scholar 

  12. Ting C-J, Peng C-J, Lu H-Y, Wu S-T (1990) J Am Ceram Soc 73:329–334

    Article  CAS  Google Scholar 

  13. Waser R, Hagenbeck R (2000) Acta Mater 48:797–825

    Article  CAS  Google Scholar 

  14. Vollmann M, Waser R (1997) J Electroceram 1:51–64

    Article  CAS  Google Scholar 

  15. Preis W, Sitte W (2014) Solid State Ionics 262:486–489

    Article  CAS  Google Scholar 

  16. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  17. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, Hoboken

    Book  Google Scholar 

  18. Boukamp BA (2004) Solid State Ionics 169:65–73

    Article  CAS  Google Scholar 

  19. Preis W, Sitte W (2006) Solid State Ionics 177:3093–3098

    Article  CAS  Google Scholar 

  20. Kirstein K, Reichmann K, Preis W, Mitsche S (2011) J Eur Ceram Soc 31:2339–2349

    Article  CAS  Google Scholar 

  21. Heinen B, Waser R (1998) J Mater Sci 33:4603–4608

    Article  CAS  Google Scholar 

  22. Fleig J, Maier J (1999) J Am Ceram Soc 82:3485–3493

    Article  CAS  Google Scholar 

  23. Adler SB (2002) J Electrochem Soc 149:E166–E172

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Austrian Federal Government (in particular from Bundesministerium für Verkehr, Innovation und Technologie and Bundesministerium für Wissenschaft, Forschung und Wirtschaft) represented by Österreichische Forschungsförderungsgesellschaft mbH and the Styrian and the Tyrolean Provincial Government, represented by Steirische Wirtschaftsförderungsgesellschaft mbH and Standortagentur Tirol, within the framework of the COMET Funding Programme is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Preis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preis, W., Hofer, J. & Sitte, W. Characterization of electrical properties of n-conducting barium titanate as a function of dc-bias and ac-voltage amplitude by application of impedance spectroscopy. J Solid State Electrochem 19, 2439–2444 (2015). https://doi.org/10.1007/s10008-015-2896-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2896-6

Keywords

Navigation