Skip to main content
Log in

A disposable electrochemical sensor based on bifunctional periodic mesoporous organosilica for the determination of lead in drinking waters

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new bifunctional disulfide- and tetrasulfide-bridged periodic mesoporous organosilica (PMO) with mercaptothiazoline ligand was synthesized and employed to prepare chemically modified carbon paste electrodes for Pb(II) detection in aqueous media by square wave adsorptive stripping voltammetry. To demonstrate the real interest of bifunctionalization, carbon paste electrodes were prepared with disulfide- and tetrasulfide-bridged PMO without mercaptothiazoline ligand. Results showed the importance of bifunctionalization of PMOs to improve the sensitivity for the determination of Pb(II) in water samples. To achieve the most accurate and sensitive Pb(II) measurements, optimization of the operating parameters in preconcentration and detection steps was performed. Finally, the modified carbon paste electrode prepared with bifunctional disulfide-bridged PMO with mercaptothiazoline ligand was applied to determine Pb(II) in different water samples without any pretreatment. Using this electrode, the optimal operating conditions were 120 s of electrolysis time in HCl 0.4 M. In these conditions, the voltammetric signal increased linearly with the preconcentration time from 1 to 10 min. Under optimized conditions, the linear range was 2–100 μg/L (R 2 = 0.9943) with a detection limit of 0.5 μg/L (for 5-min preconcentration time). Good reproducibility was achieved on both single and equally prepared electrodes. The accuracy of the method was validated by analysing Pb(II) in different drinking and natural water samples, with spiked recoveries in the range of 95–105 ± 10 %. The results demonstrated that the prepared electrochemical sensor exhibited selectivity, fast response time and exceptional long-time stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. World standards for allowable levels of lead in water (2014) Lead free water http://www.leadfreewater.com/world-standards/. Accessed 20 Oct 2014

  2. Wang J (2000) Analytical electrochemistry. Willey, New York

    Book  Google Scholar 

  3. Wang J (1985) Stripping analysis. VCH, Florida

    Google Scholar 

  4. Bellido-Milla D, Cubillana-Aguilera L, El Kaoutit M, Hernández-Artiga MP, de Cisneros Hidalgo-Hidalgo JL, Naranjo-Rodriguez I, Palacios Santander JM (2013) Anal Bional Chem 405:3525–3539

    Article  CAS  Google Scholar 

  5. Roa Morales G, Ramírez Silva T, Galicia L (2003) J Solid State Electrochem 7:355–360

    Article  CAS  Google Scholar 

  6. Cao LY, Jia JB, Wang ZH (2008) Electrochim Acta 53:2177–2182

    Article  CAS  Google Scholar 

  7. Guo JX, Chai YQ, Yuan R, Song ZJ, Zou ZF (2011) Sensors Actuators B 155:639–645

    Article  CAS  Google Scholar 

  8. Salmanipour A, Ali Taher M (2011) J Solid State Electrochem 15:2695–2702

    Article  CAS  Google Scholar 

  9. Nguyen PKQ, Lunsford SK (2012) Talanta 101:110–121

    Article  CAS  Google Scholar 

  10. Dai P, Yang Z (2012) Microchim Acta 176:109–115

    Article  CAS  Google Scholar 

  11. Wang Y, Wu Y, Xie J, Hu X (2013) Sensors Actuators B 177:1161–1166

    Article  CAS  Google Scholar 

  12. Morante-Zarcero S, Sánchez A, Fajardo M, del Hierro I, Sierra I (2010) Microchim Acta 169:57–64

    Article  CAS  Google Scholar 

  13. Sánchez A, Morante-Zarcero S, Pérez-Quintanila D, del Hierro I, Sierra I (2013) J Electroanal Chem 689:76–82

    Article  Google Scholar 

  14. Walcarius A, Etienne M, Sayen S, Lebeau B (2003) Electroanalysis 15:414–421

    Article  CAS  Google Scholar 

  15. Sierra I, Pérez-Quintanilla D (2013) Chem Soc Rev 42:3792–3807

    Article  CAS  Google Scholar 

  16. Walcarius A (2005) C R Chimie 8:693–712

    Article  CAS  Google Scholar 

  17. Walcarius A (2008) Electroanalysis 20:711–738

    Article  CAS  Google Scholar 

  18. Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O (1999) J Am Chem Soc 121:9611–9614

    Article  CAS  Google Scholar 

  19. Mizoshita N, Tani T, Inagaki S (2011) Chem Soc Rev 40:789–800

    Article  CAS  Google Scholar 

  20. Asefa T, Kruk M, MacLachlan MJ, Coombs N, Grondey H, Jaroniec M, Ozin GA (2001) J Am Chem Soc 123:8520–8530

    Article  CAS  Google Scholar 

  21. Zhang W-H, Daly B, O’Callaghan J, Zhang L, Shi J-L, Li C, Morris MA, Holmes JD (2005) Chem Mater 17:6407–6415

    Article  CAS  Google Scholar 

  22. Zhan L, Zhang W, Shi J, Hua Z, Li Y, Yan J (2003) Chem Comm 210–215

  23. Liu J, Yang J, Yang Q, Wang G, Li Y (2005) Adv Funct Mater 15:1297–1302

    Article  CAS  Google Scholar 

  24. Hao N, Han L, Yang Y, Wang H, Webley PA, Zhao D (2010) Appl Surf Sci 256:5334–5342

    Article  CAS  Google Scholar 

  25. Pérez-Quintanilla D, del Hierro I, Carrillo-Hermosilla F, Fajardo M, Sierra I (2006) Anal Bional Chem 384:827–837

    Article  Google Scholar 

  26. Yantasee W, Lin Y, Zemanian TS, Fryxell GE (2003) Analyst 128:467–472

    Article  CAS  Google Scholar 

  27. Yantasee W, Lin Y, Fryxell GE, Busche BJ (2004) Anal Chim Acta 502:207–212

    Article  CAS  Google Scholar 

  28. Yantasee W, Fryxell GE, Conner MM, Lin Y (2005) J Nanosci Nanotech 5:15371540

    Google Scholar 

  29. Cesarino I, Marino G, Matos JR, Cavalheiro ETG (2008) Talanta 75:15–21

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank financial support from CAM - European FEDER Program (Project S2013/ABI-3028)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Sierra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morante-Zarcero, S., Pérez-Quintanilla, D. & Sierra, I. A disposable electrochemical sensor based on bifunctional periodic mesoporous organosilica for the determination of lead in drinking waters. J Solid State Electrochem 19, 2117–2127 (2015). https://doi.org/10.1007/s10008-015-2889-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2889-5

Keywords

Navigation