Skip to main content
Log in

Insight into the electrochemical reduction of CO2 on gold via surface-enhanced Raman spectroscopy and N-containing additives

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Due to increasing levels of greenhouse gases in the atmosphere, increased attention has been given to minimizing their emissions and reducing current levels. Primarily focusing on CO2, routes towards reducing atmospheric levels include capture, sequestration, and conversion. For CO2 conversion, Au electrocatalysts have demonstrated high CO2 reduction activity to CO which can then be further converted to various synfuels or commodity chemicals. In this work, we further probe Au electrocatalysts by utilizing a Ag-based model, using N-containing additives, such as pyrazole and benzotriazole, and surface-enhanced Raman spectroscopy. Surface-enhanced Raman spectroscopy (SERS) reveals that only in the presence of N-containing additives is a stronger CO band seen. These additives do not affect the CO2 reduction mechanism of Au, as found by Tafel and product distribution analysis. We also demonstrate enhancement of the CO2 reduction rate on Au by utilizing a known CO2 scavenger, ethanolamine, adsorbed on the Au surface. This result suggests that improving CO2 reduction should focus on the reactant side of the Sabatier plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Chem Rev 113(8):6621–6658

    Article  CAS  Google Scholar 

  2. Whipple DT, Kenis PJA (2010) J Phys Chem Lett 1(24):3451–3458

    Article  CAS  Google Scholar 

  3. Olah GA, Prakash GKS, Goeppert A (2011) J Am Chem Soc 133(33):12881–12898

    Article  CAS  Google Scholar 

  4. Fu Q, Mabilat C, Zahid M, Brisse A, Gautier L (2010) Energy Environ Sci 3(10):1382–1397

    Article  CAS  Google Scholar 

  5. Hori Y (2008) Electrochemical CO2 Reduction on metal electrodes. In: Vayenas CG, White RE, Gamboa Aldeco ME (eds) Modern aspects of electrochemistry, No 42. Modern aspects of electrochemistry, vol 42. pp 89-189

  6. Noda H, Ikeda S, Oda Y, Imai K, Maeda M, Ito K (1990) Bull Chem Soc Jpn 63(9):2459–2462

    Article  CAS  Google Scholar 

  7. Christophe J, Doneux T, Buess-Herman C (2012) Electrocatalysis 3(2):139–146

    Article  CAS  Google Scholar 

  8. Ishimaru S, Shiratsuchi R, Nogami G (2000) J Electrochem Soc 147(5):1864–1867

    Article  CAS  Google Scholar 

  9. Hansen HA, Varley JB, Peterson AA, Norskov JK (2013) J Phys Chem Lett 4(3):388–392

    Article  CAS  Google Scholar 

  10. Noda H, Ikeda S, Yamamoto A, Einaga H, Ito K (1995) Bull Chem Soc Jpn 68(7):1889–1895

    Article  CAS  Google Scholar 

  11. Hori Y, Murata A, Kikuchi K, Suzuki S (1987) J Chem Soc Chem Commun 10:728–729

    Article  Google Scholar 

  12. Delacourt C, Ridgway PL, Newman J (2010) J Electrochem Soc 157(12):B1902–B1910

    Article  CAS  Google Scholar 

  13. Chen Y, Li CW, Kanan MW (2012) J Am Chem Soc 134(49):19969–19972

    Article  CAS  Google Scholar 

  14. Kaneco S, Iiba K, Ohta K, Mizuno T, Saji A (1998) J Electroanal Chem 441(1-2):215–220

    Article  CAS  Google Scholar 

  15. Perez ER, Garcia JR, Cardoso DR, McGarvey BR, Batista EA, Rodrigues-Filho UP, Vielstich W, Franco DW (2005) J Electroanal Chem 578(1):87–94

    Article  CAS  Google Scholar 

  16. Christensen PA, Hamnett A, Muir AVG, Freeman NA (1990) J Electroanal Chem 288(1-2):197–215

    Article  CAS  Google Scholar 

  17. Tornow CE, Thorson MR, Ma S, Gewirth AA, Kenis PJA (2012) J Am Chem Soc 134(48):19520–19523

    Article  CAS  Google Scholar 

  18. Schmitt KG, Gewirth AA (2014) J Phys Chem C 118(31):17567–17576

    Article  CAS  Google Scholar 

  19. Thorum MS, Anderson CA, Hatch JJ, Campbell AS, Marshall NM, Zimmerman SC, Lu Y, Gewirth AA (2010) J Phys Chem Lett 1(15):2251–2254

    Article  CAS  Google Scholar 

  20. Gao P, Gosztola D, Leung LWH, Weaver MJ (1987) J Electroanal Chem 233(1-2):211–222

    Article  CAS  Google Scholar 

  21. Cooney RP, Mahoney MR, Howard MW (1980) Chem Phys Lett 76(3):448–452

    Article  CAS  Google Scholar 

  22. Schultz ZD, Feng ZV, Biggin ME, Gewirth AA (2006) J Electrochem Soc 153(2):C97–C107

    Article  CAS  Google Scholar 

  23. Abild-Pedersen F, Andersson MP (2007) Surf Sci 601(7):1747–1753

    Article  CAS  Google Scholar 

  24. Gajdos M, Eichler A, Hafner J (2004) J Phys-Cond Matt 16(8):1141–1164

    Article  CAS  Google Scholar 

  25. Santiago-Rodriguez Y, Herron JA, Curet-Arana MC, Mavrikakis M (2014) Surf Sci 627:57–69

    Article  CAS  Google Scholar 

  26. McElhiney G, Papp H, Pritchard J (1976) Surf Sci 54(3):617–634

    Article  CAS  Google Scholar 

  27. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) J Environ Sci (China) 20(1):14–27

    Article  CAS  Google Scholar 

  28. Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F (2014). Nat Commun 5

  29. Lee S, Ju H, Machunda RL, Uhm S, Lee JK, Lee HJ, Lee J (2014) J Mater Chem A.

  30. Schmidt TJ, Gasteiger HA, Behm RJ (1999) J Electrochem Soc 146(4):1296–1304

    Article  CAS  Google Scholar 

  31. Gojkovic SL, Gupta S, Savinell RF (1999) J Electroanal Chem 462(1):63–72

    Article  CAS  Google Scholar 

  32. Kapalka A, Foti G, Comninellis C (2008) Electrochem Commun 10(4):607–610

    Article  CAS  Google Scholar 

  33. Medard C, Lefevre M, Dodelet JP, Jaouen F, Lindbergh G (2006) Electrochim Acta 51(16):3202–3213

    Article  CAS  Google Scholar 

  34. Kudelski A, Pettinger B (2004) Chem Phys Lett 383(1-2):76–79

    Article  CAS  Google Scholar 

  35. Kudelski A (2009) J Solid State Electrochem 13(2):225–230

    Article  CAS  Google Scholar 

  36. Beltramo GL, Shubina TE, Koper MTM (2005) ChemPhysChem 6(12):2597–2606

    Article  CAS  Google Scholar 

  37. Blizanac BB, Arenz M, Ross PN, Markovic NM (2004) J Am Chem Soc 126(32):10130–10141

    Article  CAS  Google Scholar 

  38. Blizanac BB, Lucas CA, Gallagher ME, Arenz M, Ross PN, Markovic NM (2004) J Phys Chem B 108(2):625–634

    Article  CAS  Google Scholar 

  39. Krishnakumar V, Jayamani N, Mathammal R (2011) Spectrochim Acta Part -Molec Biomolec Spectroscop 79(5):1959–1968

    Article  CAS  Google Scholar 

  40. Thomas S, Venkateswaran S, Kapoor S, D'Cunha R, Mukherjee T (2004) Spectrochim Acta Part -Molec Biomolec Spectroscop 60(1-2):25–29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Science Foundation (NSF) for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew A. Gewirth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1502 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oberst, J.L., Jhong, HR.“., Kenis, P.J.A. et al. Insight into the electrochemical reduction of CO2 on gold via surface-enhanced Raman spectroscopy and N-containing additives. J Solid State Electrochem 20, 1149–1154 (2016). https://doi.org/10.1007/s10008-015-2874-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2874-z

Keywords

Navigation