Critical lithiation for C-rate dependent mechanical stresses in LiFePO4

Abstract

The prevention of capacity loss after electrochemical cycling is of paramount importance to the development of lithium-ion batteries, especially for applications in the electric vehicle industry. The objective of this research is to investigate C-rate dependent diffusion-induced stresses in electrode materials. LiFePO4 is selected as the model system in this study since it is one of the most promising cathode materials used in electric vehicle applications. Finite element models incorporating several factors with concentration dependency are developed in this study including concentration-dependent anisotropic material properties, concentration-dependent and C-rate-dependent volume expansion coefficients, and concentration-dependent lithium ion diffusivity. Our simulation results show that the effect of concentration dependency on mechanical properties and lithium diffusivities cannot be neglected in mechanical stress predictions. We also observe that C-rate has a great effect on how fast the surface concentration is saturated, suggesting that C-rate dependency of the diffusion-induced stresses occurs at a critical lithiation stage: 47.5, 26.5, 10.1, and 6.8 % lithiation for 1, 2, 6, and 10 C, respectively. Mechanical stresses in perfect and cracked particles are also studied. It is observed that the crack surface orientation plays an important role in the diffusion-induced stress. The existence of the crack surface increases mechanical stresses, suggesting that particles inside the material may undergo fractures faster and may accelerate the material deterioration, leading to capacity loss at higher C-rate (dis)charging.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Chiang YM (2010) Science 330:1485–1486

    CAS  Article  Google Scholar 

  2. 2.

    Kang B, Ceder G (2009) Nature 458:190–193

    CAS  Article  Google Scholar 

  3. 3.

    Yuan LX, Wang ZH, Zhang WX, Hu XL, Chen JT, Huang YH, Goodenough JB (2005) Energy Environ Sci 4:269–284

    Article  Google Scholar 

  4. 4.

    Zhang WJ (2011) J Power Sources 196:2962–2970

    CAS  Article  Google Scholar 

  5. 5.

    Wang YX, Huang HYS (2012) TSEST Trans Control Mech Sys 1(5):192–200

    CAS  Google Scholar 

  6. 6.

    Meethong N, Kao YH, Tang M, Huang HYS, Carter WC, Chiang YM (2008) ACS Chem Mat 20:6189–6198

    CAS  Article  Google Scholar 

  7. 7.

    Meethong N, Huang HYS, Carter WC, Chiang YM (2007) Electrochem Solid-State Lett 10:A134–A138

    CAS  Article  Google Scholar 

  8. 8.

    Meethong N, Huang HYS, Speakman SA, Carter WC, Chiang YM (2007) Adv Funct Mater 17:1115–1123

    CAS  Article  Google Scholar 

  9. 9.

    Kao YH, Tang M, Meethong N, Bai J, Carter WC, Chiang YM (2010) Chem Mat 22:5845–5855

    CAS  Article  Google Scholar 

  10. 10.

    Kobayashi G, Nishimura SI, Park MS, Kanno R, Yashima M, Ida T, Yamada A (2009) Adv Funct Mater 19:395–403

    CAS  Article  Google Scholar 

  11. 11.

    Orikasa Y, Maeda T, Koyama Y, Murayama H, Fukuda K, Tanida H, Arai H, Matsubara E, Uchimoto Y, Ogumi Z (2013) J Am Chem Soc 135:5497–5500

    CAS  Article  Google Scholar 

  12. 12.

    Zhang X, Hulzen MV, Singh DP, Brownrigg A, Wright JP, Dijk NHV, Wagemaker M (2014) Nano Lett 14:2279–2285

    CAS  Article  Google Scholar 

  13. 13.

    Zhang Y, Wang CY, Tang X (2011) J Power Sources 196:1513–1520

    CAS  Article  Google Scholar 

  14. 14.

    Bai P, Cogswell DA, Bazant MZ (2011) Nano Lett 11:4890–4896

    CAS  Article  Google Scholar 

  15. 15.

    Garcia RE, Chiang YM, Carter WC, Limthongkul P, Bishop CM (2005) J Electrochem Soc 152:A255–A263

    CAS  Article  Google Scholar 

  16. 16.

    Tang M, Huang HYS, Meethong N, Kao YH, Carter WC, Chiang YM (2009) ACS Chem Mater 21:1557–1571

    CAS  Article  Google Scholar 

  17. 17.

    Orikasa Y, Maeda T, Koyama Y, Minato T, Murayama H, Fukuda K, Tanida H, Arai H, Matsubara E, Uchimoto Y, Ogumi Z (2013) J Electrochem Soc 160:A3061–A3065

    CAS  Article  Google Scholar 

  18. 18.

    Liu Q, He H, Li ZF, Liu Y, Ren Y, Lu W, Lu J, Stach EA, Xie J (2014) ACS Appl Mater Interfaces 6:3282–3289

    CAS  Article  Google Scholar 

  19. 19.

    Li Y, Gabaly FE, Ferguson TR, Smith RB, Bartelt NC, Sugar JD, Fenton KR, Cogswell DA, Kilcoyne ALD, Tyliszczak T, Bazant MZ, Chueh WC (2014) Nat Mater 13:1149–1156

    CAS  Article  Google Scholar 

  20. 20.

    Ferguson TR, Bazant MZ (2012) J Electrochem Soc 159:A1967–A1985

    CAS  Article  Google Scholar 

  21. 21.

    Bazant MZ (2013) Acc Chem Res 46:1144–1160

    CAS  Article  Google Scholar 

  22. 22.

    Cogswell DA, Bazant MZ (2012) ACS Nano 6:2215–2225

    CAS  Article  Google Scholar 

  23. 23.

    Christensen J, Newman J (2006) J of Solid State Electrochem 10:293–319

    CAS  Article  Google Scholar 

  24. 24.

    Cheng YT, Verbrugge MW (2009) J Power Sources 190:453–460

    CAS  Article  Google Scholar 

  25. 25.

    Deshpande R, Cheng YT, Verbrugge MW, Timmons A (2011) J Electrochem Soc 158:A718–A724

    CAS  Article  Google Scholar 

  26. 26.

    Zhang X, Shyy W, Sastry AM (2007) J Electrochem Soc 154:A910–A916

    CAS  Article  Google Scholar 

  27. 27.

    ChiuHuang CK, Huang HYS (2013) J Electrochem Soc 160:A2184–A2188

    CAS  Article  Google Scholar 

  28. 28.

    ChiuHuang CK, Zhou C, Huang HYS (2014) J Nanotechnol Eng Med 5:021002

    Article  Google Scholar 

  29. 29.

    Wang D, Wu X, Wang Z, Chen L (2005) J Power Sources 140:125–128

    CAS  Article  Google Scholar 

  30. 30.

    Goodenough JB, Kim Y (2010) Chem Mater 22:587–603

    CAS  Article  Google Scholar 

  31. 31.

    Mukhopadhyay A, Sheldon BW (2014) Prog Mater Sci 63:58–116

    CAS  Article  Google Scholar 

  32. 32.

    Malave V, Berger JR, Zhu H, Kee RJ (2014) Electrochim Acta 130:707–717

    CAS  Article  Google Scholar 

  33. 33.

    Zhu M, Park J, Sastry AM (2012) J Electrochem Soc 159:A492–A498

    CAS  Article  Google Scholar 

  34. 34.

    Zhao Z, Pharr M, Vlassak JJ, Suo Z (2010) J Appl Phys 108:073517

    Article  Google Scholar 

  35. 35.

    Zhang X, Sastry AM, Shyy W (2008) J Electrochem Soc 155:A542–A552

    CAS  Article  Google Scholar 

  36. 36.

    Bower AF, Guduru PR (2012) Modell Simul Mater Sci Eng 20:045004

    Article  Google Scholar 

  37. 37.

    Huang HYS, Wang YX (2012) J Electrochem Soc 159:A815–A821

    Article  Google Scholar 

  38. 38.

    Stamps MA, Eischen JW, Huang HYS (2015) J Eng Mech: under review

  39. 39.

    Lim C, Yan B, Yin L, Zhu L (2012) Electrochim Acta 75:279–287

    CAS  Article  Google Scholar 

  40. 40.

    Woodford WH, Carter WC, Chiang YM (2012) Energy Environ Sci 5:8014–8024

    CAS  Article  Google Scholar 

  41. 41.

    Woodford WH, Chiang YM, Carter WC (2010) J Electrochem Soc 157:A1052–A1059

    CAS  Article  Google Scholar 

  42. 42.

    Bohn E, Eckl T, Kamlah M, Mcmeeking R (2013) J Electrochem Soc 160:A1638–A1652

    CAS  Article  Google Scholar 

  43. 43.

    Nagpure SC, Downing RG, Bhushan B, Babu SS, Cao L (2011) Electrochim Acta 56:4735–4743

    CAS  Article  Google Scholar 

  44. 44.

    Monastyrskii MI (1999) Riemann, topology, and physics. Birkhäuser, Boston

    Book  Google Scholar 

  45. 45.

    Howell D (2006) Annual progress report—Energy Storage Research and Development, Washington D.C.

  46. 46.

    Morgan D, Ven AVD, Ceder G (2004) Electrochem Solid-State Lett 7:A30–A32

    CAS  Article  Google Scholar 

  47. 47.

    Farkhondeh M, Delacourt C (2012) J Electrochem Soc 159:A177–A192

    CAS  Article  Google Scholar 

  48. 48.

    Deshpande R, Qi Y, Cheng YT (2010) J Electrochem Soc 157:A967–A971

    CAS  Article  Google Scholar 

  49. 49.

    Maxisch T, Ceder G (2006) APS Phys Rev B: Condens Matter Mater Phys 73:174112

    Article  Google Scholar 

  50. 50.

    Brunetti G, Robert D, Guillemaud PB, Rouviere JL, Rauch EF, Martin JF, Colin JF, Bertin F, Cayron C (2011) ACS Chem Mater 23:4515–4524

    CAS  Article  Google Scholar 

  51. 51.

    Toonder JMJD, Dommelen JAWV, Baaijens FPT (1999) Modell Simul Mater Sci Eng 7:909–928

    Article  Google Scholar 

  52. 52.

    Daniel IM, Ishai O (2006) Engineering mechanics of composite materials. Oxford University Press, United Kingdom

    Google Scholar 

  53. 53.

    Gabrisch H, Wilcox J, Doeff MM (2008) Electrochem Solid-State Lett 11:A25–A29

    CAS  Article  Google Scholar 

  54. 54.

    Park J, Lu W, Sastry AM (2011) J Electrochem Soc 158:A201–A206

    CAS  Article  Google Scholar 

  55. 55.

    Dathar GKP, Sheppard D, Stevenson KJ, Henkelman G (2011) ACS Chem Mater 23:4032–4037

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hsiao-Ying Shadow Huang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

ChiuHuang, CK., Huang, HY.S. Critical lithiation for C-rate dependent mechanical stresses in LiFePO4 . J Solid State Electrochem 19, 2245–2253 (2015). https://doi.org/10.1007/s10008-015-2836-5

Download citation

Keyword

  • Diffusion-induced stresses
  • Lithium-ion batteries
  • Concentration gradient
  • Crack
  • Finite element method