Journal of Solid State Electrochemistry

, Volume 19, Issue 8, pp 2245–2253 | Cite as

Critical lithiation for C-rate dependent mechanical stresses in LiFePO4

  • Cheng-Kai ChiuHuang
  • Hsiao-Ying Shadow HuangEmail author
Original Paper


The prevention of capacity loss after electrochemical cycling is of paramount importance to the development of lithium-ion batteries, especially for applications in the electric vehicle industry. The objective of this research is to investigate C-rate dependent diffusion-induced stresses in electrode materials. LiFePO4 is selected as the model system in this study since it is one of the most promising cathode materials used in electric vehicle applications. Finite element models incorporating several factors with concentration dependency are developed in this study including concentration-dependent anisotropic material properties, concentration-dependent and C-rate-dependent volume expansion coefficients, and concentration-dependent lithium ion diffusivity. Our simulation results show that the effect of concentration dependency on mechanical properties and lithium diffusivities cannot be neglected in mechanical stress predictions. We also observe that C-rate has a great effect on how fast the surface concentration is saturated, suggesting that C-rate dependency of the diffusion-induced stresses occurs at a critical lithiation stage: 47.5, 26.5, 10.1, and 6.8 % lithiation for 1, 2, 6, and 10 C, respectively. Mechanical stresses in perfect and cracked particles are also studied. It is observed that the crack surface orientation plays an important role in the diffusion-induced stress. The existence of the crack surface increases mechanical stresses, suggesting that particles inside the material may undergo fractures faster and may accelerate the material deterioration, leading to capacity loss at higher C-rate (dis)charging.


Diffusion-induced stresses Lithium-ion batteries Concentration gradient Crack Finite element method 


  1. 1.
    Chiang YM (2010) Science 330:1485–1486CrossRefGoogle Scholar
  2. 2.
    Kang B, Ceder G (2009) Nature 458:190–193CrossRefGoogle Scholar
  3. 3.
    Yuan LX, Wang ZH, Zhang WX, Hu XL, Chen JT, Huang YH, Goodenough JB (2005) Energy Environ Sci 4:269–284CrossRefGoogle Scholar
  4. 4.
    Zhang WJ (2011) J Power Sources 196:2962–2970CrossRefGoogle Scholar
  5. 5.
    Wang YX, Huang HYS (2012) TSEST Trans Control Mech Sys 1(5):192–200Google Scholar
  6. 6.
    Meethong N, Kao YH, Tang M, Huang HYS, Carter WC, Chiang YM (2008) ACS Chem Mat 20:6189–6198CrossRefGoogle Scholar
  7. 7.
    Meethong N, Huang HYS, Carter WC, Chiang YM (2007) Electrochem Solid-State Lett 10:A134–A138CrossRefGoogle Scholar
  8. 8.
    Meethong N, Huang HYS, Speakman SA, Carter WC, Chiang YM (2007) Adv Funct Mater 17:1115–1123CrossRefGoogle Scholar
  9. 9.
    Kao YH, Tang M, Meethong N, Bai J, Carter WC, Chiang YM (2010) Chem Mat 22:5845–5855CrossRefGoogle Scholar
  10. 10.
    Kobayashi G, Nishimura SI, Park MS, Kanno R, Yashima M, Ida T, Yamada A (2009) Adv Funct Mater 19:395–403CrossRefGoogle Scholar
  11. 11.
    Orikasa Y, Maeda T, Koyama Y, Murayama H, Fukuda K, Tanida H, Arai H, Matsubara E, Uchimoto Y, Ogumi Z (2013) J Am Chem Soc 135:5497–5500CrossRefGoogle Scholar
  12. 12.
    Zhang X, Hulzen MV, Singh DP, Brownrigg A, Wright JP, Dijk NHV, Wagemaker M (2014) Nano Lett 14:2279–2285CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Wang CY, Tang X (2011) J Power Sources 196:1513–1520CrossRefGoogle Scholar
  14. 14.
    Bai P, Cogswell DA, Bazant MZ (2011) Nano Lett 11:4890–4896CrossRefGoogle Scholar
  15. 15.
    Garcia RE, Chiang YM, Carter WC, Limthongkul P, Bishop CM (2005) J Electrochem Soc 152:A255–A263CrossRefGoogle Scholar
  16. 16.
    Tang M, Huang HYS, Meethong N, Kao YH, Carter WC, Chiang YM (2009) ACS Chem Mater 21:1557–1571CrossRefGoogle Scholar
  17. 17.
    Orikasa Y, Maeda T, Koyama Y, Minato T, Murayama H, Fukuda K, Tanida H, Arai H, Matsubara E, Uchimoto Y, Ogumi Z (2013) J Electrochem Soc 160:A3061–A3065CrossRefGoogle Scholar
  18. 18.
    Liu Q, He H, Li ZF, Liu Y, Ren Y, Lu W, Lu J, Stach EA, Xie J (2014) ACS Appl Mater Interfaces 6:3282–3289CrossRefGoogle Scholar
  19. 19.
    Li Y, Gabaly FE, Ferguson TR, Smith RB, Bartelt NC, Sugar JD, Fenton KR, Cogswell DA, Kilcoyne ALD, Tyliszczak T, Bazant MZ, Chueh WC (2014) Nat Mater 13:1149–1156CrossRefGoogle Scholar
  20. 20.
    Ferguson TR, Bazant MZ (2012) J Electrochem Soc 159:A1967–A1985CrossRefGoogle Scholar
  21. 21.
    Bazant MZ (2013) Acc Chem Res 46:1144–1160CrossRefGoogle Scholar
  22. 22.
    Cogswell DA, Bazant MZ (2012) ACS Nano 6:2215–2225CrossRefGoogle Scholar
  23. 23.
    Christensen J, Newman J (2006) J of Solid State Electrochem 10:293–319CrossRefGoogle Scholar
  24. 24.
    Cheng YT, Verbrugge MW (2009) J Power Sources 190:453–460CrossRefGoogle Scholar
  25. 25.
    Deshpande R, Cheng YT, Verbrugge MW, Timmons A (2011) J Electrochem Soc 158:A718–A724CrossRefGoogle Scholar
  26. 26.
    Zhang X, Shyy W, Sastry AM (2007) J Electrochem Soc 154:A910–A916CrossRefGoogle Scholar
  27. 27.
    ChiuHuang CK, Huang HYS (2013) J Electrochem Soc 160:A2184–A2188CrossRefGoogle Scholar
  28. 28.
    ChiuHuang CK, Zhou C, Huang HYS (2014) J Nanotechnol Eng Med 5:021002CrossRefGoogle Scholar
  29. 29.
    Wang D, Wu X, Wang Z, Chen L (2005) J Power Sources 140:125–128CrossRefGoogle Scholar
  30. 30.
    Goodenough JB, Kim Y (2010) Chem Mater 22:587–603CrossRefGoogle Scholar
  31. 31.
    Mukhopadhyay A, Sheldon BW (2014) Prog Mater Sci 63:58–116CrossRefGoogle Scholar
  32. 32.
    Malave V, Berger JR, Zhu H, Kee RJ (2014) Electrochim Acta 130:707–717CrossRefGoogle Scholar
  33. 33.
    Zhu M, Park J, Sastry AM (2012) J Electrochem Soc 159:A492–A498CrossRefGoogle Scholar
  34. 34.
    Zhao Z, Pharr M, Vlassak JJ, Suo Z (2010) J Appl Phys 108:073517CrossRefGoogle Scholar
  35. 35.
    Zhang X, Sastry AM, Shyy W (2008) J Electrochem Soc 155:A542–A552CrossRefGoogle Scholar
  36. 36.
    Bower AF, Guduru PR (2012) Modell Simul Mater Sci Eng 20:045004CrossRefGoogle Scholar
  37. 37.
    Huang HYS, Wang YX (2012) J Electrochem Soc 159:A815–A821CrossRefGoogle Scholar
  38. 38.
    Stamps MA, Eischen JW, Huang HYS (2015) J Eng Mech: under reviewGoogle Scholar
  39. 39.
    Lim C, Yan B, Yin L, Zhu L (2012) Electrochim Acta 75:279–287CrossRefGoogle Scholar
  40. 40.
    Woodford WH, Carter WC, Chiang YM (2012) Energy Environ Sci 5:8014–8024CrossRefGoogle Scholar
  41. 41.
    Woodford WH, Chiang YM, Carter WC (2010) J Electrochem Soc 157:A1052–A1059CrossRefGoogle Scholar
  42. 42.
    Bohn E, Eckl T, Kamlah M, Mcmeeking R (2013) J Electrochem Soc 160:A1638–A1652CrossRefGoogle Scholar
  43. 43.
    Nagpure SC, Downing RG, Bhushan B, Babu SS, Cao L (2011) Electrochim Acta 56:4735–4743CrossRefGoogle Scholar
  44. 44.
    Monastyrskii MI (1999) Riemann, topology, and physics. Birkhäuser, BostonCrossRefGoogle Scholar
  45. 45.
    Howell D (2006) Annual progress report—Energy Storage Research and Development, Washington D.C.Google Scholar
  46. 46.
    Morgan D, Ven AVD, Ceder G (2004) Electrochem Solid-State Lett 7:A30–A32CrossRefGoogle Scholar
  47. 47.
    Farkhondeh M, Delacourt C (2012) J Electrochem Soc 159:A177–A192CrossRefGoogle Scholar
  48. 48.
    Deshpande R, Qi Y, Cheng YT (2010) J Electrochem Soc 157:A967–A971CrossRefGoogle Scholar
  49. 49.
    Maxisch T, Ceder G (2006) APS Phys Rev B: Condens Matter Mater Phys 73:174112CrossRefGoogle Scholar
  50. 50.
    Brunetti G, Robert D, Guillemaud PB, Rouviere JL, Rauch EF, Martin JF, Colin JF, Bertin F, Cayron C (2011) ACS Chem Mater 23:4515–4524CrossRefGoogle Scholar
  51. 51.
    Toonder JMJD, Dommelen JAWV, Baaijens FPT (1999) Modell Simul Mater Sci Eng 7:909–928CrossRefGoogle Scholar
  52. 52.
    Daniel IM, Ishai O (2006) Engineering mechanics of composite materials. Oxford University Press, United KingdomGoogle Scholar
  53. 53.
    Gabrisch H, Wilcox J, Doeff MM (2008) Electrochem Solid-State Lett 11:A25–A29CrossRefGoogle Scholar
  54. 54.
    Park J, Lu W, Sastry AM (2011) J Electrochem Soc 158:A201–A206CrossRefGoogle Scholar
  55. 55.
    Dathar GKP, Sheppard D, Stevenson KJ, Henkelman G (2011) ACS Chem Mater 23:4032–4037CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Mechanical and Aerospace Engineering DepartmentNorth Carolina State UniversityRaleighUSA

Personalised recommendations