Skip to main content

On the electrochemical synthesis and charge storage properties of WO3/polyaniline hybrid nanostructures

Abstract

The aim of this study is to tailor the electrochemical synthesis of hybrid materials consisting of nanoporous tungsten trioxide (WO3) and polyaniline (PANI) for application as supercapacitor electrodes. Nanoporous WO3, synthesized by the anodization of tungsten foils, acted as the active material framework for this assembly. With the variation of the anodization voltage, host materials with different morphological features were prepared. Subsequently, electrodeposition of PANI was carried out by potentiodynamic cycling in highly acidic media. Through alteration of the number of deposition cycles, the amount of deposited PANI was varied. This parameter had a decisive impact on the morphology of the resulting hybrids as confirmed by SEM images. Cyclic voltammetry and galvanostatic charge–discharge measurements were carried out to characterize the charge storage properties of the synthesized hybrids. By comparing electrochemical data with structural properties, structure–property relationships were established, and under optimal conditions, 350 F g−1 and 200 mF cm−2 were obtained.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    CAS  Article  Google Scholar 

  2. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    CAS  Article  Google Scholar 

  3. Reyes-Gil KR, Wiggenhorn C, Brunschwig BS, Lewis NS (2013) Comparison between the quantum yields of compact and porous WO3 photoanodes. J Phys Chem C 117:14947–14957

    CAS  Article  Google Scholar 

  4. Zhu T, Chong MN, Chan ES (2014) Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review. ChemSusChem 7:2974–2997

    CAS  Article  Google Scholar 

  5. Deb SK (2008) Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol Energy Mater Sol Cells 92:245–258

    CAS  Article  Google Scholar 

  6. Nah Y-C, Ghicov A, Kim D, Schmuki P (2008) Enhanced electrochromic properties of self-organized nanoporous WO3. Electrochem Commun 10:1777–1780

    CAS  Article  Google Scholar 

  7. Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K (2011) Nanostructured tungsten oxide—properties, synthesis, and applications. Adv Funct Mater 21:2175–2196

    CAS  Article  Google Scholar 

  8. Wei H, Yan X, Wu S, Luo Z, Wei S, Guo Z (2012) Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: electrochromic behavior and electrochemical energy storage. J Phys Chem C 116:25052–25064

    CAS  Article  Google Scholar 

  9. Wei H, Yan X, Wu S et al (2012) Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films : electrochromic behavior and electrochemical energy storage. J Phys Chem C 116:25052–25064

    CAS  Article  Google Scholar 

  10. Nwanya AC, Jafta CJ, Ejikeme PM, Ugwuoke PE, Reddy MV, Osuji RU, Ozoemena KI, Ezema FI (2014) Electrochromic and electrochemical capacitive properties of tungsten oxide and its polyaniline nanocomposite films obtained by chemical bath deposition method. Electrochim Acta 128:218–225

    CAS  Article  Google Scholar 

  11. Tian Y, Cong S, Su W, Chen H, Li Q, Geng F, Zhao Z (2014) Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett 14:2150–2156

    CAS  Article  Google Scholar 

  12. Zou B-X, Liang Y, Liu X-X, Diamond D, Lau K-T (2011) Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite. J Power Sources 196:4842–4848

    CAS  Article  Google Scholar 

  13. Chang K-H, Hu C-C, Huang C-M, Liu Y-L, Chang C-I (2011) Microwave-assisted hydrothermal synthesis of crystalline WO3-WO3·0.5H2O mixtures for pseudocapacitors of the asymmetric type. J Power Sources 196:2387–2392

    CAS  Article  Google Scholar 

  14. Yoon S, Kang E, Kim JK, Lee CW, Lee J (2011) Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Chem Commun 47:1021–1023

    CAS  Article  Google Scholar 

  15. Zhu M, Meng W, Huang Y, Huang Y, Zhi C (2014) Proton-insertion-enhanced pseudocapacitance based on the assembly structure of tungsten oxide. ACS Appl Mater Interfaces 6:18901–18910

    CAS  Article  Google Scholar 

  16. Gao L, Wang X, Xie Z, Song W, Wang L, Wu X, Qu F, Chen D, Shen G (2013) High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J Mater Chem A 1:7167–7173

    CAS  Article  Google Scholar 

  17. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939

    CAS  Article  Google Scholar 

  18. Chai Y, Tam CW, Beh KP, Yam FK, Hassan Z (2013) Porous WO3 formed by anodization in oxalic acid. J Porous Mater 20:997–1002

    CAS  Article  Google Scholar 

  19. Yang M, Shrestha NK, Schmuki P (2009) Thick porous tungsten trioxide films by anodization of tungsten in fluoride containing phosphoric acid electrolyte. Electrochem Commun 11:1908–1911

    CAS  Article  Google Scholar 

  20. Lee W, Kim D, Lee K, Roy P, Schmuki P (2010) Direct anodic growth of thick WO3 mesosponge layers and characterization of their photoelectrochemical response. Electrochim Acta 56:828–833

    CAS  Article  Google Scholar 

  21. Ou JZ, Rani RA, Balendhran S, Zoolfakar AS, Field MR, Zhuiykov S, O'Mullane AP, Kalantar-zadeh K (2013) Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic property. Electrochem Commun 27:128–132

    CAS  Article  Google Scholar 

  22. de Tacconi NR, Chenthamarakshan CR, Yogeeswaran G, Watcharenwong A, De Zoysa RS, Basit NA, Rajeshwar K (2006) Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response. J Phys Chem B 110:25347–25355

    Article  Google Scholar 

  23. Cristino V, Caramori S, Argazzi R, Meda L, Marra GL, Bignozzi CA (2011) Efficient photoelectrochemical water splitting by anodically grown WO3 electrodes. Langmuir 27:7276–7284

    CAS  Article  Google Scholar 

  24. Wright M, Uddin A (2012) Organic-inorganic hybrid solar cells: a comparative review. Sol Energy Mater Sol Cells 107:87–111

    CAS  Article  Google Scholar 

  25. Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2:213–234

    CAS  Article  Google Scholar 

  26. Janáky C, Rajeshwar K (2014) The role of (photo)electrochemistry in the rational design of hybrid conducting polymer/semiconductor assemblies: from fundamental concepts to practical applications. Prog Polym Sci. doi:10.1016/j.progpolymsci.2014.10.003

    Google Scholar 

  27. Li H, Wang J, Chu Q, Wang Z, Zhang F, Wang S (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources 190:578–586

    CAS  Article  Google Scholar 

  28. Janáky C, de Tacconi NR, Chanmanee W, Rajeshwar K (2012) Electrodeposited polyaniline in a nanoporous WO3 matrix: an organic/inorganic hybrid exhibiting both p-and n-type photoelectrochemical activity. J Phys Chem C 116:4234–4242

    Article  Google Scholar 

  29. Janáky C, de Tacconi NR, Chanmanee W, Rajeshwar K (2012) Bringing conjugated polymers and oxide nanoarchitectures into intimate contact: light-induced electrodeposition of polypyrrole and polyaniline on nanoporous WO3 or TiO2 nanotube array. J Phys Chem C 116:19145–19155

    Article  Google Scholar 

  30. Baba A, Tian S, Stefani F, Xia C, Wang Z, Advincula RC, Johannsmann D, Knoll W (2004) Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance. J Electroanal Chem 562:95–103

    CAS  Article  Google Scholar 

  31. Tsuchiya H, Macak JM, Sieber I et al (2005) Self-organized porous WO3 formed in NaF electrolytes. Electrochem Commun 7:295–298

    CAS  Article  Google Scholar 

  32. Macak JM, Hildebrand H, Marten-Jahns U, Schmuki P (2008) Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J Electroanal Chem 621:254–266

    CAS  Article  Google Scholar 

  33. Watcharenwong A, Chanmanee W, de Tacconi NR, Chenthamarakshan CR, Kajitvichyanukul P, Rajeshwar K (2008) Anodic growth of nanoporous WO3 films: morphology, photoelectrochemical response and photocatalytic activity for methylene blue and hexavalent chrome conversion. J Electroanal Chem 612:112–120

    CAS  Article  Google Scholar 

  34. Chen Z, Lv H, Zhu X, Li D, Zhang S, Chen X, Song Y (2014) Electropolymerization of aniline onto anodic WO3 film: an approach to extend polyaniline electroactivity beyond pH 7. J Phys Chem C 118:27449–27458

    CAS  Article  Google Scholar 

  35. Sopčić S, Kraljić-Roković M, Mandić Z, Inzelt G (2010) Preparation and characterization of RuO2/polyaniline composite electrodes. J Solid State Electrochem 14:2021–2026

    Article  Google Scholar 

  36. Wei H, Ding D, Yan X, Guo J, Shao L, Chen H, Sun L, Colorado HA, Wei S, Guo Z (2014) Tungsten trioxide/zinc tungstate bilayers: electrochromic behaviors, energy storage and electron transfer. Electrochim Acta 132:58–66

    CAS  Article  Google Scholar 

Download references

Acknowledgments

CJ thanks the Hungarian Academy of Sciences for financial support through its „Lendület” excellence program. One of us (KR) thanks Sid Richardson Carbon & Energy Co., Fort Worth, TX, for partial funding support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Csaba Janáky or Krishnan Rajeshwar.

Additional information

This article is dedicated to Mikhail A. Vorotyntsev on the occasion of his 70th birthday in recognition of his valuable contribution to the electrochemistry of redox-active films.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samu, G.F., Pencz, K., Janáky, C. et al. On the electrochemical synthesis and charge storage properties of WO3/polyaniline hybrid nanostructures. J Solid State Electrochem 19, 2741–2751 (2015). https://doi.org/10.1007/s10008-015-2820-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2820-0

Keywords

  • Polyaniline
  • WO3
  • Supercapacitor
  • Electrochemical deposition
  • Composite