Advertisement

Journal of Solid State Electrochemistry

, Volume 19, Issue 9, pp 2711–2722 | Cite as

Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion

  • Yuriy V. Tolmachev
  • Andrii Piatkivskyi
  • Victor V. Ryzhov
  • Dmitry V. Konev
  • Mikhail A. Vorotyntsev
Feature Article

Abstract

A flow battery employing H2 as the fuel and one or more of highly soluble halate salts (such as 50 % w/w LiBrO3 aq.) as the oxidant presents a viable opportunity as a power source for fully electric vehicles which meets the specific energy, specific power, energy efficiency, cost, safety, and refill time requirements. We further disclose a process of regeneration of the fuel and the oxidant from the discharged halide salt and water using electric (or solar) energy as the only input and generating no chemical waste. The cycle of discharge and regeneration takes advantage of pH-driven comproportionation and disproportionation reactions, respectively, and of pH manipulation using an orthogonal ion migration across laminar flow (OIMALF™) reactor.

Keywords

Bromate Negative Electrode Rotate Disk Electrode Flow Batterie Redox Flow Batterie 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Y.V.T. expresses his gratitude to Mr. Brian Back of Ftorion, Inc., Dr. Lin-Feng Li of Bettergy Corp., Dr. Mohammad Enayetullah of Trenergi Corp., and Mr. Andrey A. Volkovoy of Volkovoy Group for providing partial financial, facilities, and equipment support during this work, as well as to North Shore InnoVentures startup incubator for their assistance with Ftorion’s business development. A special acknowledgement goes to Mr. Ashok Tankha for his passionate commitment to the protection of Ftorion’s intellectual property. A.P. and V.R. acknowledge support from Northern Illinois University.

References

  1. 1.
    Frumkin AN, Florianovich GM (1951) Dokl Akad Nauk SSSR 80:907Google Scholar
  2. 2.
    Frumkin AN, Florianovich GM (1955) Zh Fiz Khim 29:1827Google Scholar
  3. 3.
    Frumkin AN, Nikolaeva-Fedorovich NV, Berezina NP, Keis KE (1975) J Electroanal Chem 58:189CrossRefGoogle Scholar
  4. 4.
    Vorotyntsev MA (1979) In Advances in science & technology: electrochemistry. VINITI 14:57–119Google Scholar
  5. 5.
    Tolmachev YV (2012) USAPat. Appl. 13/969,597. Flow battery and regeneration systemGoogle Scholar
  6. 6.
    Tolmachev YV (2014) USA Pat. Appl. 14/184,702. Flow battery and regeneration system with improved safetyGoogle Scholar
  7. 7.
    Tolmachev YV (2014) USA Pat. Appl. 61/986,830. High specific energy aqueous flow batteryGoogle Scholar
  8. 8.
    Tolmachev YV, Vorotyntsev MA (2014) Russ J Electrochem 50:451–461Google Scholar
  9. 9.
    Vorotyntsev MA, Konev DV, Tolmachev YV (2015) Electrochim Acta submittedGoogle Scholar
  10. 10.
    Tomazic G, Skyllas-Kazacos M (2015) Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC” mechanism. Theory for stationary 1D regime. In: Electrochemical energy storage for renewable sources and grid balancing. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Viswanathan V, Crawford A, Stephenson D, Kim S, Wang W, Li B, Coffey G, Thomsen E, Graff G, Balducci P, Kintner-Meyer M, Sprenkle V (2014) J Power Sources 247:1040–1051CrossRefGoogle Scholar
  12. 12.
    Cunha Á, Martins J, Rodrigues N, Brito FP (2015) Int J Energy Res. doi: 10.1002/er.3260 Google Scholar
  13. 13.
    Alotto P, Guarnieri M, Moro F (2014) Renew Sustain Energy Rev 29:325–335CrossRefGoogle Scholar
  14. 14.
    Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Electrochim Acta 101:27–40CrossRefGoogle Scholar
  15. 15.
    Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu QH (2011) J Appl Electrochem 41:1137–1164CrossRefGoogle Scholar
  16. 16.
    Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M (2011) J Electrochem Soc 158:R55–R79CrossRefGoogle Scholar
  17. 17.
    Shigematsu T (2011) SEI Technol Rev 73:4–13Google Scholar
  18. 18.
    Zhang HM, Zhang Y, Liu ZH, Wang XL (2009) Prog Chem 21:2333–2340Google Scholar
  19. 19.
    Tolmachev YV (2014) Russ J Electrochem 50:339–356Google Scholar
  20. 20.
    Tucker M, Cho K, Weber A, Lin G, Van Nguyen T (2014) J Appl Electrochem 1–9Google Scholar
  21. 21.
    Potilitzin A (1891) J Russ ChemSoc 22:392–393Google Scholar
  22. 22.
    Simmons JP, Waldeck WF (1931) J Am Chem Soc 53:1725–1727CrossRefGoogle Scholar
  23. 23.
    Bonner OD (1979) J Chem Eng Data 24:210–211CrossRefGoogle Scholar
  24. 24.
    Partanen J (2012) J Solut Chem 41:271–293CrossRefGoogle Scholar
  25. 25.
    Campbell AN, Oliver BG (1969) Can J Chem 47:2681–2685CrossRefGoogle Scholar
  26. 26.
    Oliver BG, Janz GJ (1971) J Phys Chem 75:2948–2953CrossRefGoogle Scholar
  27. 27.
    Campbell AN, Bhatnagar ON (1972) Can J Chem 50:1627–1632CrossRefGoogle Scholar
  28. 28.
    Wang S-CS, Bennion DN (1983) J Electrochem Soc 130:741–747CrossRefGoogle Scholar
  29. 29.
    Stenger VA, Van Effen RM, Walker LC (2002) J Chem Eng Data 47:618–619CrossRefGoogle Scholar
  30. 30.
    Linke WF (1955) J Am Chem Soc 77:866–867CrossRefGoogle Scholar
  31. 31.
    Ruiz GN, Bove LE, Corti HR, Loerting T (2014) Phys Chem Chem Phys 16:18553CrossRefGoogle Scholar
  32. 32.
    Ferro S (2005) J Appl Electrochem 35:279–283CrossRefGoogle Scholar
  33. 33.
    Livshits V, Ulus A, Peled E (2006) Electrochem Commun 8:1358–1362CrossRefGoogle Scholar
  34. 34.
    Zhang R, Weidner JW (2011) J Appl Electrochem 41:1245–1252CrossRefGoogle Scholar
  35. 35.
    Zhang LS, Shao ZG, Wang XY, Yu HM, Liu S, Yi BL (2013) J Power Sources 242:15–22CrossRefGoogle Scholar
  36. 36.
    Cho KT, Tucker MC, Ding M, Ridgway P, Battaglia VS, Srinivasan V, Weber AZ (2014) ChemPlusChemGoogle Scholar
  37. 37.
    Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen X, Aspuru-Guzik A, Gordon RJ, Aziz MJ (2014) Nature 505:195CrossRefGoogle Scholar
  38. 38.
    Bennion DN, Wang SCS (1983) J Electrochem Soc 130:741CrossRefGoogle Scholar
  39. 39.
    White JC (1948) PhD Diss (OSU) http://books.google.com/books?id=O_bUXwAACAAJ
  40. 40.
    Pugh W (1932) Trans Roy Soc S Afr 20:327CrossRefGoogle Scholar
  41. 41.
    Musbally GM (1966) PhD Diss (U Manitoba) http://books.google.com/books?id=1Cm3MwAACAAJ
  42. 42.
    Chiang YM, Carter WC, Ho BY, Duduta M, Limthongkul P (2014) US8722227Google Scholar
  43. 43.
    Chiang YM, Duduta M, Holman R, Limthongkul P, Tan T (2014) US20140170524Google Scholar
  44. 44.
    Katsoudas J, Timofeeva EV, Singh D, Segre CU (2013) US 61/822208Google Scholar
  45. 45.
    Huang QZ, Li H, Gratzel M, Wang Q (2013) Phys Chem Chem Phys 15:1793–1797CrossRefGoogle Scholar
  46. 46.
  47. 47.
  48. 48.
    Griffiths S (2014) In The Daily Mail. 7 Nov 2014Google Scholar
  49. 49.
    Cyrus Wadiaa PA, Srinivasan V (2011) J Power Sources 196:1593–1598CrossRefGoogle Scholar
  50. 50.
    Takahashi R, Tashi I (1961) Rev Polarog Japan 9:76–83CrossRefGoogle Scholar
  51. 51.
    Desideri PG, Lepri L (1969) J Electroanal Chem 22:265–274CrossRefGoogle Scholar
  52. 52.
    Cortes CES, Faria RB (2001) J Braz Chem Soc 12:775–779CrossRefGoogle Scholar
  53. 53.
    Bergmann MEH, Koparal AS, Iourtchouk T (2014) Crit Rev Environ Sci Technol 44:348–390CrossRefGoogle Scholar
  54. 54.
    Alotto P, Guarnieri M, Moro F, Stella A (2013) Compel 32:1459–1470CrossRefGoogle Scholar
  55. 55.
    Thomas D (2008) Can Naval Rev 3:35–36Google Scholar
  56. 56.
    Mendez A, Leo TJ, Herreros MA (2014) Energies 7:4676–4693CrossRefGoogle Scholar
  57. 57.
    Mitlitsky F, Blake M, Weisberg AH (1998) Energy Fuel 56–71Google Scholar
  58. 58.
    Faria RB, Epstein IR, Kustin K (1994) J Phys Chem 98:1363–1367CrossRefGoogle Scholar
  59. 59.
    Beckwith RC, Margerum DW (1997) Inorg Chem 36:3754–3760CrossRefGoogle Scholar
  60. 60.
    Jia ZJ, Margerum DW, Francisco JS (2000) Inorg Chem 39:2614–2620CrossRefGoogle Scholar
  61. 61.
    Nicoson JS, Margerum DW (2002) Inorg Chem 41:342–347CrossRefGoogle Scholar
  62. 62.
    Kormanyos B, Nagypal I, Peintler G, Horvath AK (2008) Inorg Chem 47:7914–7920CrossRefGoogle Scholar
  63. 63.
    Sant'Anna RTP, Santos CMP, Silva GP, Ferreira RJR, Oliveira AP, Cortes CES, Faria RB (2012) J Braz Chem Soc 23:1543–1550CrossRefGoogle Scholar
  64. 64.
    Beckwith RC, Wang TX, Margerum DW (1996) Inorg Chem 35:995–1000CrossRefGoogle Scholar
  65. 65.
    Alves WA, Tellez CA, Sala O, Santos PS, Faria RB (2001) J Raman Spectrosc 32:1032–1036CrossRefGoogle Scholar
  66. 66.
    Alves WA, Faria RB (2002) Spectrochim Acta A 58:1395–1399CrossRefGoogle Scholar
  67. 67.
    Alves WA, Cortes CES, Faria RB (2004) Inorg Chem 43:4112–4114CrossRefGoogle Scholar
  68. 68.
    Cortes CES, Faria RB (2004) Inorg Chem 43:1395–1402CrossRefGoogle Scholar
  69. 69.
    Machado PB, Faria RB (2009) J Phys Chem A 113:5338–5341CrossRefGoogle Scholar
  70. 70.
    Schmitz G (1999) Phys Chem Chem Phys 1:1909–1914CrossRefGoogle Scholar
  71. 71.
    Schmitz G (2007) In J Chem Kinet 39:17–21CrossRefGoogle Scholar
  72. 72.
    Schmitz G (2008) In J Chem Kinet 40:647–652CrossRefGoogle Scholar
  73. 73.
    Toth Z, Fabian I (2004) Inorg Chem 43:2717–2723CrossRefGoogle Scholar
  74. 74.
    Toth Z, Fabian I (2000) Inorg Chem 39:4608–4614CrossRefGoogle Scholar
  75. 75.
    Pisarenko AN, Young R, Quiñones O, Vanderford BJ, Mawhinney DB (2011) Inorg Chem 50:8691–8693CrossRefGoogle Scholar
  76. 76.
    Bergmann MEH, Iourtchouk T, Rollin J (2011) J Appl Electrochem 41:1109–1123CrossRefGoogle Scholar
  77. 77.
    Liu ZF, Siu CK, Tse JS (1999) Chem Phys Lett 311:93–101CrossRefGoogle Scholar
  78. 78.
    Gershenzon M, Davidovits P, Jayne JT, Kolb CE, Worsnop DR (2002) J Phys Chem A 106:7748–7754CrossRefGoogle Scholar
  79. 79.
    Wang TX, Margerum DW (1994) Inorg Chem 33:1050–1055CrossRefGoogle Scholar
  80. 80.
    Osuga T, Sugino K (1957) J Electrochem Soc 104:448–451CrossRefGoogle Scholar
  81. 81.
    Kessler AM (2015) NY Times Jan. 5Google Scholar
  82. 82.
  83. 83.
    Waugaman DG, Kini A, Kettleborough CF (1993) J Energy Res Technol 115:1–8CrossRefGoogle Scholar
  84. 84.
    Kessling W, Laevemann E, Peltzer M (1998) Int J Refrig 21:150–156CrossRefGoogle Scholar
  85. 85.
    Mazzei P, Minichiello F, Palma D (2005) Appl Therm Eng 25:677–707CrossRefGoogle Scholar
  86. 86.
    Daou K, Wang RZ, Xia ZZ (2006) Renew Sustain Energy Rev 10:55–77CrossRefGoogle Scholar
  87. 87.
    Mei L, Dai YJ (2008) Renew Sustain Energy Rev 12:662–689CrossRefGoogle Scholar
  88. 88.
    Lowenstein A (2008) HVAC & R Research 14:819–839CrossRefGoogle Scholar
  89. 89.
    Misha S, Mat S, Ruslan MH, Sopian K (2012) Renew Sustain Energy Rev 16:4686–4707CrossRefGoogle Scholar
  90. 90.
    Balam NB, Bhargava PK (2012) http://hdl.handle.net/123456789/1248
  91. 91.
    Enteria N, Yoshino H, Mochida A (2013) Renew Sustain Energy Rev 28:265–289CrossRefGoogle Scholar
  92. 92.
    Chua KJ, Chou SK, Yang WM, Yan J (2013) Appl Energy 104:87–104CrossRefGoogle Scholar
  93. 93.
    Mohammad AT, Mat SB, Sulaiman MY, Sopian K, Al-abidi AA (2013) En Build 67:22–33CrossRefGoogle Scholar
  94. 94.
  95. 95.
    Lin G (2012) ARPA-E SBIR grant, www.tvnsystems.com
  96. 96.
  97. 97.
    NASA (2013) New class of flow batteries for terrestrial and aerospace energy storage applicationshttp://www.techbriefs.com/component/content/article/9-ntb/tech-briefs/physical-sciences/16346
  98. 98.
  99. 99.
    Braff WA (2013) PhD dissertation, MITGoogle Scholar
  100. 100.
    Braff WA, Bazant MZ, Buie CR (2013) Nat Commun 4:2346CrossRefGoogle Scholar
  101. 101.
    Cho KT, Albertus P, Battaglia V, Kojic A, Srinivasan V, Weber AZ (2013) En Techn 1:596–608CrossRefGoogle Scholar
  102. 102.
  103. 103.
    Molter T (2013) NYSERDA grant #30363Google Scholar
  104. 104.
    Manso AP, Marzo FF, Barranco J, Garikano X, Mujika MG (2012) Int J Hydrocarb Eng 37:15256–15287CrossRefGoogle Scholar
  105. 105.
    Liu P, Cao YL, Li GR, Gao XP, Ai XP, Yang HX (2013) Chemsuschem 6:802–806CrossRefGoogle Scholar
  106. 106.
    Levy-Clement C, Heller A, Bonner WA, Parkinson BA (1982) J Electrochem Soc 129:1701–1705CrossRefGoogle Scholar
  107. 107.
    Singh N, Mubeen S, Lee J, Metiu H, Moskovits M, McFarland EW (2014) Energy Environ Sci 7:978–981CrossRefGoogle Scholar
  108. 108.
    Kubiak CP, Schneemeyer LF, Wrighton MS (1980) J Am Chem Soc 102:6898–6900CrossRefGoogle Scholar
  109. 109.
    Lewis N (2007) MRS Bull 32:808–820CrossRefGoogle Scholar
  110. 110.
    Grantham DH (1980) USA Patent 4236984 AGoogle Scholar
  111. 111.
    Khaselev O, Turner JA (1999) Electrochem Solid-State Lett 2:310–312CrossRefGoogle Scholar
  112. 112.
    Stenger VA, Van Effen RM, Walker LC (2002) J Chem Eng Data 47:618–619Google Scholar
  113. 113.

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Ftorion, Inc.BostonUSA
  2. 2.Northern Illinois UniversityDeKalbUSA
  3. 3.Institute for Problems of Chemical PhysicsChernogolovkaRussia
  4. 4.Mendeleev University of Chemical Technology of RussiaMoscowRussia
  5. 5.Lomonosov Moscow State UniversityMoscowRussia
  6. 6.ICMUB UMR 6302 CNRSUniversite de BourgogneDijonFrance

Personalised recommendations