Skip to main content
Log in

A novel method to detect cathodic second-phase particles in Mg alloys

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, a new method for detecting cathodic second-phase particles on the Mg alloy surface has been developed based on in situ observation of the blade-abraded surfaces of AZ31, AZ61, and 99.9 % pure Mg during the immersion in concentrated alkaline solutions. Continuous local gas evolutions were observed at certain points on the blade-abraded surface, and second-phase particles were found at the same positions, revealing the presence of cathodic particles at the gas evolution sites. The continuous local gas evolution reaction was found to be coupled with not only oxide formation reaction on the Mg matrix around the cathodic particles but also dissolution of Mg at the area within 2–3 μm distance from the cathodic particle. The gas evolution rate appeared to be proportional to the size of cathodic particles, and various cathodic particles containing Fe, Mn, Al, and/or Si were found to be present in the Mg alloys. Based upon the experimental results, it is concluded that the new method is simple, fast, and non-destructive, and it can be used to detect all the cathodic second-phase particles present on the entire surface of Mg alloys, irrespective of the sample shape and size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen J, Wang J, Han E, Dong J, Wei K (2007) Electrochim Acta 52:3299–3309

    Article  CAS  Google Scholar 

  2. Zhao MC, Liu M, Song G, Atrens A (2008) Corros Sci 50:1939–1953

    Article  CAS  Google Scholar 

  3. Song GL, Mishra R, Xu ZQ (2010) Electrochem Commun 12:100–10129

    Google Scholar 

  4. Williams G, McMurray HN, Grace R (2010) Electrochim Acta 55:7824–7833

    Article  CAS  Google Scholar 

  5. Ishizaki T, Hieda J, Saito N, Takai O (2010) Electrochim Acta 55:7094–7101

    Article  CAS  Google Scholar 

  6. Eaves D, Williams G, McMurray HN (2012) Electrochim Acta 79:1–7

    Article  CAS  Google Scholar 

  7. Birbilis N, Williams G, Gusieva K, Samaniego A, Gibson MA, McMurray HN (2013) Electrochem Commun 34:295–298

    Article  CAS  Google Scholar 

  8. Ha HY, Kang JY, Kim SG, Kim BC, Park SS, Yim CD, Yu BS (2014) Corros Sci 82:369–379

    Article  CAS  Google Scholar 

  9. Andreatta F, Apachitei I, Kodentsov AA, Dzwonczyk J, Duszczyk J (2006) Electrochim Acta 51:3551–3557

    Article  CAS  Google Scholar 

  10. Ben-Haroush M, Ben-Hamu G, Eliezer D, Wagner L (2008) Corros Sci 50:1766–1778

    Article  CAS  Google Scholar 

  11. Asmussen M, Jakupi P, Danaie M, Botton GA, Shoesmith DW (2013) Corros Sci 77:143–150

    Article  Google Scholar 

  12. Liu M, Song GL (2013) Corros Sci 77:143–150

    Article  CAS  Google Scholar 

  13. Song GL, Xu Z (2010) Electrochim Acta 55:4148–4161

    Article  CAS  Google Scholar 

  14. Song GL, Xu ZQ (2012) Corros Sci 54:97–105

    Article  CAS  Google Scholar 

  15. Nwaogu UC, Blawert C, Scharnagl N, Dietzel W, Kainer KU (2009) Corros Sci 51:2544–2556

    Article  CAS  Google Scholar 

  16. Nwaogu UC, Blawert C, Scharnagl N, Dietzel W, Kainer KU (2010) Corros Sci 52:2143–2154

    Article  CAS  Google Scholar 

  17. Danaie M, Asmussen RM, Jakupi P, Shoesmith DW, Botton GA (2014) Corros Sci 83:299–309

    Article  CAS  Google Scholar 

  18. Williams G, Dafydd HL, Grace R (2013) Electrochim Acta 109:489–501

    Article  CAS  Google Scholar 

  19. Merino MC, Pardo A, Arrabal R, Merino S, Casajús P, Mohedano M (2010) Corros Sci 52:1696–1704

    Article  CAS  Google Scholar 

  20. Pardo A, Merino MC, Coy AE, Arrabal R, Viejo R, Matykina E (2008) Corros Sci 50:823–834

    Article  CAS  Google Scholar 

  21. Perez P, Onofre E, Cabeza S, Llorente I, Valle KA, Garcia-Alonso MC, Adeva P, Escudero ML (2013) Corros Sci 69:226–235

    Article  CAS  Google Scholar 

  22. Li YG, Wei YH, Hou LF, Han PJ (2013) Corros Sci 69:67–76

    Article  CAS  Google Scholar 

  23. Moon SM, Yang CN, manuscript in preparation

Download references

Acknowledgments

This research was financially supported by the research grant of general research program (PNK3632) from Korea Institute of Materials Science. One of the authors (SIP) would like to also express his heartfelt gratitude to Professor Dr.-Eng. Suk-Joong L Kang, Department MSE, KAIST for his full support to continuing scientific work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungmo Moon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, S., Yang, C. & Pyun, SI. A novel method to detect cathodic second-phase particles in Mg alloys. J Solid State Electrochem 19, 3491–3499 (2015). https://doi.org/10.1007/s10008-015-2768-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2768-0

Keywords

Navigation