Skip to main content
Log in

Experimental design for optimizing the corrosion resistance of pulse reverse electrodeposited graphene oxide thin film

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, linear polarization resistance (LPR) of pulse reverse electrodeposited graphene oxide (PREGO) coating is optimized by design of experiments approach (central composite design). Pulse current density (i), cathodic (T c) and anodic (T a) pulse durations, and total electrodeposition time (T t) are selected as the substantial factors. The best prediction model proposes a definitive linear relation without any significant interaction of the LPR by analysis of variance. The desirable value of LPR was predicted equal to 5358 Ω cm2, obtaining at the pulse current density of 235.62 mA cm−2, T a of 7.75 ms, T c equal to 3.25 ms (f = 100 Hz), and T t of approximately 225 s. Appearance of the XRD peaks at 25.11° and 27.18° and declining coating impedance up to 21 Ω cm2, as well as the elimination of functional groups at FT-IR spectra, are vividly promised the formation of sp2 domains in the PREGO coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu Y, Murali S, Cai W, Li X, Suk J, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, production, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  2. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanal 22:1027–1036

    Article  CAS  Google Scholar 

  3. Jagannadham K (2012) Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metall Mater Trans B 43B:316–324

    Article  Google Scholar 

  4. Jo I, Hsu I, Lee YJ, Sadeghi M, Kim S, Cronin S, Tutuc E, Banerjee SK, Yao Z, Shi L (2011) Low-frequency acoustic phonon temperature distribution in electrically biased graphene. Nano Lett 11:85–90

    Article  CAS  Google Scholar 

  5. Frank IW, Tanenbaum DM, Zande AM, McEuen PL (2007) Mechanical properties of suspended graphene sheets. Vac Sci Tech 25:2558–2562

    Article  CAS  Google Scholar 

  6. Poetschke M, Rocha CG, Foa Torres LEF, Roche S, Cuniberti G (2010) Modeling graphene-based nanoelectromechanical devices. Phys Rev B 81:193401–193404

    Article  Google Scholar 

  7. Singh Raman RK, Banerjee PC, Lobo DE, Gullapalli H, Sumandasa M, Kumar A, Choudhary L, Tkacz R, Ajayan PM, Majumder M (2012) Protecting copper from electrochemical degradation by graphene coating. Carbon 50:4040–4045

    Article  CAS  Google Scholar 

  8. Kirkland NT, Schiller T, Medhekar N, Birbilis N (2012) Exploring graphene as a corrosion protection barrier. Corros Sci 56:1–4

    Article  CAS  Google Scholar 

  9. Yi Lih ET, Mat Zaid R, Ling Ling T, Feng Chong K (2012) Facile corrosion protection coating from graphene. Int J Chem Eng Appl 3:453–455

    Google Scholar 

  10. Singh BP, Nayak S, Nanda KK, Jena BK, Bhattacharjee S, Besra L (2013) The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon 61:47–56

    Article  CAS  Google Scholar 

  11. Kousalya AS, Kumar A, Paul R, Zemlyanov D, Fisher TS (2013) Graphene: an effective oxidation barrier coating for liquid and two-phase cooling systems. Corros Sci 69:5–10

    Article  CAS  Google Scholar 

  12. Sahu SC, Samantara AK, Seth M, Parwaiz S, Singh BP, Rath PC, Jena BK (2013) A facile electrochemical approach for development of highly corrosion protective coatings using graphene nanosheets. Electrochem Commun 32:22–26

    Article  CAS  Google Scholar 

  13. Praveen Kumar CM, Venkatesha TV, Shabadi R (2013) Preparation and corrosion behavior of Ni and Ni-graphene composite coatings. Mater Res Bull 48:1477–1483

    Article  Google Scholar 

  14. Singh BP, Jena BK, Bhattacharjee S, Besra L (2013) Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper. Surf Coat Tech 232:475–481

    Article  CAS  Google Scholar 

  15. Nayak PK, Hsu C, Wang S, Sung JC, Huang J (2013) Graphene coated Ni films: a protective coating. Thin Solid Films 529:312–316

    Article  CAS  Google Scholar 

  16. Chen S, Brown L, Levendorf M, Cai W, Ju S, Edgeworth J, Li X, Magnuson C, Velamakanni A, Piner RD, Kang J, Park J, Ruoff RS (2011) Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5:1321–1327

    Article  CAS  Google Scholar 

  17. Dennis RV, Viyannalage LT, Gaikwad AV, Rout TK, Banerjee S (2013) Graphene nanocomposite coatings for protecting low-alloy steels from corrosion. Am Ceram Soc Bull 92:18–24

    CAS  Google Scholar 

  18. Ci L, Song L, Jariwala D, Elias AL, Gao W, Weies M, Ajayan P (2009) Graphene shape control by multistage cutting and transfer. Adv Mater 21:1–5

    Article  Google Scholar 

  19. Zhao J, Chen G, Zhang W, Li P, Wang L, Yue Q, Wang H, Dong R, Yan X, Liu J (2011) High-resolution separation of graphene oxide by capillary electrophoresis. Anal Chem 83:9100–9106

    Article  CAS  Google Scholar 

  20. Vadahanambi S, Jung J, Oh I (2011) Microwave syntheses of graphene and graphene decorated with metal nanoparticles. Carbon 49:4449–4457

    Article  CAS  Google Scholar 

  21. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659

    Article  CAS  Google Scholar 

  22. Peng X, Liu X, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49:3488–3496

    Article  CAS  Google Scholar 

  23. Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13:133–137

    Article  CAS  Google Scholar 

  24. Harima Y, Setodoi S, Imae I, Komaguchi K, Ooyama Y, Ohshita J, Mizota H, Yano J (2011) Electrochemical reduction of graphene oxide in organic solvents. Electrochim Acta 56:5363–5368

    Article  CAS  Google Scholar 

  25. Yaghoubinezhad Y, Afshar A (2015) Design of experiments for pulse reverse electrodeposition of graphene oxide towards hydrogen evolution reaction. ECS J Solid State Sci Technol 4:M7–M17

    Article  CAS  Google Scholar 

  26. Hilder M, Winther-Jensen B, Li D, Forsyth M, MacFarlane DR (2011) Direct electro-deposition of graphene from aqueous suspensions. Phys Chem Chem Phys 13:9187–9193

    Article  CAS  Google Scholar 

  27. Ye W, Zhang X, Chen Y, Du Y, Zhou F, Wang C (2013) Pulsed electrodeposition of reduced graphene oxide on glass carbon electrode as an effective support of electrodeposited Pt microspherical particles: nucleation studies and the application for methanol electro-oxidation. Int J Electrochem Sci 8:2122–2139

    CAS  Google Scholar 

  28. Tsutakawa RK (1972) Design of experiment for bioassay. J Am Stat Assoc 67:584–590

    Article  Google Scholar 

  29. Nsengiyumva C, Beer JOD, Wauw WV, Vlietinck AJ, Parmentier F (1997) An exprimental design approach to selecting the optimum liquid chromatographic conditions for the determination of vitamins B1, B2-phosphate, B3, B6 and C in effervescent tablets containing saccharin and sunset yellow FCF. Chromatographia 44:634–644

    Article  CAS  Google Scholar 

  30. Yi BJ, Chung GB, Na HY, Kim WK, Suh IH (2003) Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges. Robot Auton Trans B 19:604–612

    Article  Google Scholar 

  31. Man HL, Behera SK, Park HS (2010) Optimization of operational parameters for ethanol production from Korean food waste leachate. Int J Environ Sci Tech 7(1):157–164

    Article  Google Scholar 

  32. Poroch-Seritan M, Gutt S, Gutt G, Cretescu I, Cojocaru C, Severin T (2011) Design of experiments for statistical modeling and multi-response optimization of nickel electroplating process. Chem Eng Res Des 89:136–147

    Article  CAS  Google Scholar 

  33. Ravikumar K, Pakshirajan K, Swaminathan T, Balu K (2005) Optimization of batch process parameters using response surface methodology for dye removal by a novel adsorbent. Chem Eng J 105:131–138

    Article  CAS  Google Scholar 

  34. Wang JP, Chen YZ, Ge XW, Yu HQ (2007) Optimization of coagulation–flocculation process for a paper-recycling wastewater treatment using response surface methodology. Colloid Surf A 302:204–210

    Article  CAS  Google Scholar 

  35. Aleboyeh A, Daneshvar N, Kasiri MB (2008) Optimization of C.I. Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chem Eng Process 47:827–832

    Article  CAS  Google Scholar 

  36. Chen X, Wang W, Li S, Xue J, Fan L, Sheng Z, Chen Y (2010) Optimization of ultrasound-assisted extraction of lingzhi polysaccharides using response surface methodology and its inhibitory effect on cervical cancer cells. Carbohydr Polym 80:944–948

    Article  CAS  Google Scholar 

  37. Imanieh I, Yousefi E, Dolati A, Mohammadi MR (2013) Experiments design for hardness optimization of the Ni-Cr alloy electrodeposited by pulse plating. Acta Metall Sin 26:558–564

    Article  CAS  Google Scholar 

  38. Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mofarrah E, Mehranian M (2005) Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation. J Hazard Mater 123:187–195

    Article  CAS  Google Scholar 

  39. Rosa PAJ, Azevedo AM, Aires Barros MR (2007) Application of central composite design to the optimisation of aqueous two-phase extraction of human antibodies. J Chromatogr A 1141:50–60

    Article  CAS  Google Scholar 

  40. Hummers WS, Offeman RE (1958) Preparation of graphene oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  41. Chandrasekar MS, Pushpavanam M (2008) Pulse and pulse reverse plating-conceptual, advantages and applications. Electrochim Acta 53:3313–3322

    Article  CAS  Google Scholar 

  42. Zhang Y, Yang Y, Xiao P, Zhang X, Lu L, Li L (2009) Preparation of Ni nanoparticle-TiO2 nanotube composite by pulse electrodeposition. Mater Lett 63:2429–2431

    Article  CAS  Google Scholar 

  43. Xiao F, Xu Y (2012) Pulse electrodeposition of manganese oxide for high-rate capability supercapacitors. Int J Electrochem Sci 7:7440–7450

    CAS  Google Scholar 

  44. Low CTJ, Walsh FC, Chakrabarti MH, Hashim MA (2013) Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54:1–21

    Article  CAS  Google Scholar 

  45. Kauppila J, Kunnasa P, Damlina P, Viinikanoja A, Kvarnström C (2013) Electrochemical reduction of graphene oxide films in aqueous and organic solutions. Electrochim Acta 89:84–89

    Article  CAS  Google Scholar 

  46. Cote LJ, Kim J, Tung VC, Luo J, Kim F, Huang J (2011) Graphene oxide as surfactant sheets. Pure Appl Chem 83:95–110

    CAS  Google Scholar 

  47. Antony J (2003) Design of experiments for engineers and scientists. Elsevier Science & Technology Books, New York

    Google Scholar 

  48. Khorasani S, Motieifar A, Rashidian B (2003) Optimal pulse shapes for reperiodic reverse electroplating. Iran J Sci Technol 27:701–711

    Google Scholar 

  49. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47:145–152

    Article  CAS  Google Scholar 

  50. Ramesha GK, Sampath S (2009) Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J Phys Chem Lett 113:7985–7989

    Article  CAS  Google Scholar 

  51. Paredes I, Villar Rodil S, Alonso M, Tascon JMD (2008) Graphene oxide dispersions in organic solvent. Langmuir 24:10560–10564

    Article  CAS  Google Scholar 

  52. Peng X, Liu X, Diamond D, Tong Lau K (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49:3488–3496

    Article  CAS  Google Scholar 

  53. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 58:1–8

    Google Scholar 

  54. Peng XY, Liu XX, Diamond D, Tong Lau K (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49:3488–3496

    Article  CAS  Google Scholar 

  55. Grinou A, Yun Y, Cho S, Park H, Jin H (2012) Dispersion of Pt nanoparticle-doped reduced graphene oxide using aniline as a stabilizer. Materials 5:2927–2936

    Article  CAS  Google Scholar 

  56. Vázquez-Gómez L, Cattarin S, Guerriero P, Musiani M (2008) Hydrogen evolution on porous Ni cathodes modified by spontaneous deposition of Ru or Ir. Electrochim Acta 53:8310–8318

    Article  Google Scholar 

  57. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470

    Article  CAS  Google Scholar 

  58. Fei C, Xiaoli Z (2012) A method based on electrodeposition of reduced graphene oxide on glassy carbon electrode for sensitive detection of theophylline. J Solid State Electrochem 12:1867–1864

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Iran Nanotechnology Initiative Council for the partial financial support of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Yaghoubinezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoubinezhad, Y., Afshar, A. Experimental design for optimizing the corrosion resistance of pulse reverse electrodeposited graphene oxide thin film. J Solid State Electrochem 19, 1367–1380 (2015). https://doi.org/10.1007/s10008-015-2754-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2754-6

Keywords

Navigation