Skip to main content
Log in

Effect of water content on ionic current, electronic current, and nanotube morphology in Ti anodizing process

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The relationships between porous morphology and anodizing parameters, including anodizing voltage and current and water content, cannot be successfully explained. A decomposition approach of the anodizing current is proposed to overcome this challenge. The anodizing processes of Ti foils in NH4F/ethylene glycol solutions with different water contents (0, 2, 5, and 10 vol%) were investigated by analyzing the anodizing current-time curves. The measured current-time curves were fitted with a theoretical formula to obtain the corresponding fitting equations by mathematical software. The fitted curves drawn according to the fitting equations essentially coincided with the measured ones. The fitted curves were separated into two parts: ionic current-time and electronic current-time curves. The complicated surface porosities and the different lengths of nanotubes could be successfully explained by the electronic current and the ionic current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xing J, Li H, Xia Z, Chen J, Zhang Y, Zhong L (2014) Electrochim Acta 134:242–248

    Article  CAS  Google Scholar 

  2. Guan D, Hymel P, Wang Y (2012) Electrochim Acta 83:420–429

    Article  CAS  Google Scholar 

  3. Li H, Cheng J, Shu S, Zhang J, Zheng L, Tsang K, Cheng H, Liang F, Lee S, Li Y (2013) Small 9:37–44

    Article  CAS  Google Scholar 

  4. Wu H, Li D, Zhu X, Yang C, Liu D, Chen XY, Song Y, Lu LF (2014) Electrochim Acta 116:129–136

    Article  CAS  Google Scholar 

  5. Yu DL, Zhu XF, Xu Z, Zhong X, Gui Q, Song Y, Zhang SY, Chen X, Li D (2014) ACS Appl Mater Interfaces 6:8001–8005

    Article  CAS  Google Scholar 

  6. Tao L, Xiong Y, Liu H, Shen W (2014) Nanoscale 6:931–938

    Article  CAS  Google Scholar 

  7. Xu J, Wu H, Lu L, Leung S, Chen D, Chen X, Fan Z, Shen G, Li D (2014) Adv Funct Mater 24:1840–1846

    Article  CAS  Google Scholar 

  8. Hebert KR, Albu SP, Paramasivam I, Schmuki P (2012) Nat Mater 11:162–166

    Article  CAS  Google Scholar 

  9. Patermarakis G, Moussoutzanis K (2009) Electrochim Acta 54:2434–2443

    Article  CAS  Google Scholar 

  10. Houser JE, Hebert KR (2009) Nat Mater 8:415–420

    Article  CAS  Google Scholar 

  11. Oh J, Thompson CV (2011) Electrochim Acta 56:4044–4051

    Article  CAS  Google Scholar 

  12. Garcia-Vergara SJ, Skeldon P, Thompson GE, Habazaki H (2006) Electrochim Acta 52:681–687

    Article  CAS  Google Scholar 

  13. LeClere DJ, Velota A, Skeldon P, Thompson GE, Berger S, Kunze J, Schmuki P, Habazaki H, Nagata S (2008) J Electrochem Soc 155:C487–C494

    Article  CAS  Google Scholar 

  14. Zhu XF, Song Y, Liu L, Wang CY, Zheng J, Jia H, Wang X (2009) Nanotechnology 20:475303, 7pp

    Article  Google Scholar 

  15. Li DD, Zhao LA, Jiang CH, Lu JG (2010) Nano Lett 10:2766–2771

    Article  CAS  Google Scholar 

  16. Yang J, Huang H, Lin Q, Lu L, Chen X, Yang L, Zhu XF, Fan Z, Song Y, Li D (2014) ACS Appl Mater Interfaces 6:2285–2291

    Article  CAS  Google Scholar 

  17. Regonini D, Bowen CR, Jaroenworaluck A, Stevens R (2013) Mater Sci Eng R 74:377–406

    Article  Google Scholar 

  18. Cheng C, Ngan AHW (2011) Electrochim Acta 56:9998–10008

    Article  CAS  Google Scholar 

  19. Zhu XF, Liu L, Song Y, Jia H, Yu H, Xiao X, Yang XL (2008) Monatsh Chem 139:999–1003

    Article  CAS  Google Scholar 

  20. Yang R, Jiang L, Zhu XF, Song Y, Yu DL, Han A (2012) RSC Adv 2:12474–12481

    Article  CAS  Google Scholar 

  21. Zhu XF, Song Y, Yu DL, Zhang C, Yao W (2013) Electrochem Commun 29:71–74

    Article  CAS  Google Scholar 

  22. Zhong X, Yu DL, Zhang S, Chen X, Song Y, Li D, Zhu XF (2013) J Electrochem Soc 160:E125–E129

    Article  CAS  Google Scholar 

  23. Zhang SY, Yu D, Li D, Song Y, Che J, You S, Zhu XF (2014) J Electrochem Soc 161:E135–E141

    Article  CAS  Google Scholar 

  24. Christoulaki A, Dellis S, Spiliopoulos N, Anastassopoulos DL, Vradis AA (2014) J Appl Electrochem 44:701–707

    Article  CAS  Google Scholar 

  25. Pauric AD, Baig SA, Pantaleo AN, Wang Y, Kruse P (2013) J Electrochem Soc 160:C12–C18

    Article  CAS  Google Scholar 

  26. Patermarakis G, Diakonikolaou J (2012) J Solid State Electrochem 16:2921–2939

    Article  CAS  Google Scholar 

  27. Ispas A, Bund A, Vrublevsky I (2010) J Solid State Electrochem 14:2121–2128

    Article  CAS  Google Scholar 

  28. Zhang R, Jiang K, Zhu Y, Qi H, Ding GQ (2011) Appl Surf Sci 258:586–589

    Article  CAS  Google Scholar 

  29. Li Y, Ling ZY, Hu X, Liu Y, Chang Y (2012) RSC Adv 2:5164–5171

    Article  CAS  Google Scholar 

  30. Huang Y, Shih T, Chou J (2013) Appl Surf Sci 283:249–257

    Article  CAS  Google Scholar 

  31. Mazzarolo A, Curioni M, Vicenzo A, Skeldon P, Thompson GE (2012) Electrochim Acta 75:288–295

    Article  CAS  Google Scholar 

  32. Regonini D, Satka A, Jaroenworaluck A, Allsopp DWE, Bowen CR, Stevens R (2012) Electrochim Acta 74:244–253

    Article  CAS  Google Scholar 

  33. Valota A, LeClere D, Skeldon P, Curioni M, Hashimoto T, Berger S, Kunze J (2009) Electrochim Acta 54:4321–4327

    Article  CAS  Google Scholar 

  34. Vega V, Cerdeira MA, Prida VM, Alberts D, Bordel N, Pereiro R, Mera F, Garcia S, Hernandez-Velez M, Vazquez M (2008) J Non-Cryst Solids 354:5233–5235

    Article  CAS  Google Scholar 

  35. Sulka G, Kapusta-Kołodziej J, Brzózka A, Jaskula M (2013) Electrochim Acta 104:526–535

    Article  CAS  Google Scholar 

  36. Berger S, Kunze J, Schmuki P, Valota A, LeClere D, Skeldon P, Thompson GE (2010) J Electrochem Soc 157:C18–C23

    Article  CAS  Google Scholar 

  37. Albella JM, Montero I, Martinez-Duart JM (1987) Electrochim Acta 32:255–258

    Article  CAS  Google Scholar 

  38. Kim D-J, Pyun S-I, Yoon Y-G (1996) J Alloys Compd 235:182–187

    Article  CAS  Google Scholar 

  39. Pyun S-I, Moon S-M, Ahn S-H, Kim S-S (1999) Corros Sci 41:653–667

    Article  CAS  Google Scholar 

  40. Overmeere QV, Proost J (2010) Electrochim Acta 55:4653–4660

    Article  Google Scholar 

  41. Davydov AD (2001) Electrochim Acta 46:3777–3781

    Article  CAS  Google Scholar 

  42. Pyun S-I (1996) Mater Lett 27:297–305

    Article  CAS  Google Scholar 

  43. Diggle JW, Downie TC, Goulding CW (1969) Chem Rev 69:365–405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 61171043, 51102271, 51377085, 21276127).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongdong Li or Xufei Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yu, D., Song, Y. et al. Effect of water content on ionic current, electronic current, and nanotube morphology in Ti anodizing process. J Solid State Electrochem 19, 1403–1409 (2015). https://doi.org/10.1007/s10008-015-2744-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2744-8

Keywords

Navigation