Skip to main content
Log in

Improved electrochemical performance of the spherical LiNi0.5Mn1.5O4 particles modified by nano-Y2O3 coating

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The large-scale use of LiNi0.5Mn1.5O4 as the cathode material for lithium-ion battery has so far been hindered by some drawbacks, for example, the interfacial side reactions between the high-voltage charged LiNi0.5Mn1.5O4 and the liquid electrolyte. Herein, the spherical LiNi0.5Mn1.5O4 is synthesized via co-precipitation method, and then the as-prepared LiNi0.5Mn1.5O4 is modified by nano-Y2O3 coating through heterogeneous nucleation route in order to improve its electrochemical performance. The effects of nano-Y2O3 coating on structural and electrochemical performance of LiNi0.5Mn1.5O4 are systematically investigated by X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic absorption spectroscopy, and electrochemical measurements. The results demonstrate that the surface of LiNi0.5Mn1.5O4 particle is uniformly encapsulated by nano-Y2O3 coating. Meanwhile, although the nano-Y2O3 coating can still keep the spinel structure of LiNi0.5Mn1.5O4, it can apparently improve its electrochemical performance. The nano-Y2O3-coated LiNi0.5Mn1.5O4 sample can deliver an initial discharge capacity of 126.1 mAh g−1 with the capacity retention of 97.7 % after 300 cycles at current rate of 1 C at 25 °C. Particularly, the nano-Y2O3-coated LiNi0.5Mn1.5O4 sample exhibits excellent capacity retention of 91.6 % after 100 cycles even at elevated temperature and a rate of 2 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi D, Lemmon JP, Liu J (2011) Chem Rev 111:3577–3613

    Article  CAS  Google Scholar 

  2. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  3. Armand M, Tarascon JM (2008) Nature 451:652–657

    Article  CAS  Google Scholar 

  4. Dunn B, Kamath H, Tarascon J-M (2011) Science 334:928–935

    Article  CAS  Google Scholar 

  5. Kang K, Meng YS, Bréger J, Grey CP, Ceder G (2011) Science 311:977–980

    Article  Google Scholar 

  6. Li H, Wang Z, Chen L, Huang X (2009) Adv Mater 21:4593–4607

    Article  Google Scholar 

  7. Palacin MR (2009) Chem Soc Rev 38:2565–2675

    Article  CAS  Google Scholar 

  8. Hassoun J, Lee K-S, Sun Y-K, Scrosati B (2011) J Am Chem Soc 133:3139–3143

    Article  CAS  Google Scholar 

  9. Liu C, Li F, Ma L-P, Cheng H-M (2010) Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  10. Abouimrane A, Belharouak I, Amine K (2009) Electrochem Commun 11:1073–1076

    Article  CAS  Google Scholar 

  11. Sun YK, Han JM, Myung ST, Lee SW, Amine K (2006) Electrochem Commun 8:821–826

    Article  CAS  Google Scholar 

  12. Sun YK, Cho SW, Myung ST, Amine K, Prakash J (2007) Electrochim Acta 53:1013–1019

    Article  CAS  Google Scholar 

  13. Goodenough JB, Kim Y (2011) J Power Sources 196:6688–6694

    Article  CAS  Google Scholar 

  14. Whittingham MS (2004) Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  15. Amine K, Tukamoto H, Yasuda H, Fujita Y (1996) J Electrochem Soc 143:1607–1613

    Article  CAS  Google Scholar 

  16. Zhong QM, Bonakdarpour A, Zhang MJ, Gao Y, Dahn JR (1997) J Electrochem Soc 144:205–213

    Article  CAS  Google Scholar 

  17. Cabana J, Casas-Cabanas M (2012) Chem Mater 24:2952–2964

    Article  CAS  Google Scholar 

  18. Liu GQ, Wen L, Liu YM (2010) J Solid State Electrochem 14:2191–2202

    Article  CAS  Google Scholar 

  19. Terada Y, Yasaka K, Nishikawa F, Konishi T, Yoshio M, Nakai I (2001) J Solid State Chem 156:286–291

    Article  CAS  Google Scholar 

  20. Wang HL, Tan TA, Yang P, Lai MO, Lu L (2011) J Phys Chem C 115:6102–6110

    Article  CAS  Google Scholar 

  21. Alcantara R, Jaraba M, Lavela P, Tirado JL (2004) J Electroanal Chem 566:187–192

    Article  CAS  Google Scholar 

  22. Kang HB, Myung ST, Amine K, Lee SM, Sun YK (2010) J Power Sources 195:2023–2028

    Article  CAS  Google Scholar 

  23. Sun YK, Hong KJ, Prakash J, Amine K (2002) Electrochem Commun 4:344–348

    Article  CAS  Google Scholar 

  24. Talyosef Y, Markovsky B, Salitra G, Aurbach D, Kim HJ, Choi S (2005) J Power Sources 146:664–669

    Article  CAS  Google Scholar 

  25. Markovsky B, Talyossef Y, Salitra G, Aurbach D, Kim H-J, Choi S (2004) Electrochem Commun 6:821–826

    Article  CAS  Google Scholar 

  26. Aurbach D, Markovsky B, Talyossef Y, Salitra G, Kim H-J, Choi S (2006) J Power Sources 162:780–789

    Article  CAS  Google Scholar 

  27. Aravindan V, Gnanaraj J, Lee Y-S, Madhavi S (2013) J Mater Chem A 1:3518–3539

    Article  CAS  Google Scholar 

  28. Santhanam R, Rambabu B (2010) J Power Sources 195:5442–5451

    Article  CAS  Google Scholar 

  29. Chen ZH, Qin Y, Amine K, Sun Y-K (2010) J Mater Chem 20:7606–7612

    Article  CAS  Google Scholar 

  30. Yang Y, Yu GH, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao ZA, Cui Y (2011) ACS Nano 5:9187–9193

    Article  CAS  Google Scholar 

  31. Arrebola J, Caballero A, Hernan L, Morales J, Castellon ER, Barrado JRR (2007) J Electrochem Soc 154:A178–A184

    Article  CAS  Google Scholar 

  32. Liu J, Manthiram A (2009) Chem Mater 21:1695–1707

    Article  CAS  Google Scholar 

  33. Wu HM, Belharouak I, Abouimrane A, Sun YK, Amine K (2010) J Power Sources 195:2909–2913

    Article  CAS  Google Scholar 

  34. Li JG, Zhang YY, Li JJ, Wang L, He XM, Gao J (2013) Ionics 17:671–675

    Article  Google Scholar 

  35. Fang X, Ge M, Rong J, Zhou C (2013) J Mater Chem A 1:4083–4088

    Article  CAS  Google Scholar 

  36. Kim MC, Kim SH, Aravindan V, Kim WS, Lee SY, Lee YS (2013) J Electrochem Soc 160:A1003–A1008

    Article  CAS  Google Scholar 

  37. Wu F, Wang M, Su YF, Chen S (2009) J Power Sources 189:743–747

    Article  CAS  Google Scholar 

  38. Fang X, Ding N, Feng XY, Lu Y, Chen CH (2009) Electrochim Acta 54:7471–7475

    Article  CAS  Google Scholar 

  39. Kim J-H, Myung S-T, Yoon CS, Kang SG, Sun Y-K (2004) Chem Mater 16:906–914

    Article  CAS  Google Scholar 

  40. Yoon T, Park S, Mun J, Ryu JH, Choi W, Kang Y-S, Park J-H, Oh SM (2012) J Power Sources 215:312–316

    Article  CAS  Google Scholar 

  41. Liu J, Manthiram A (2009) J Phys Chem C 113:15073–15079

    Article  CAS  Google Scholar 

  42. Lundqvist A, Lindbergh G (1998) J Electrochem Soc 145:3740–3746

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China under project no. 51272221, Scientific and Technical Achievement Transformation Fund of Hunan Province under project no. 2012CK1006, Key Project of Strategic New Industry of Hunan Province under project no. 2013GK4018, and Science and Technology Plan Foundation of Hunan Province under project no. 2013FJ4062.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianyou Wang or Long Ge Hongbo Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, W., Yang, X., Wang, X. et al. Improved electrochemical performance of the spherical LiNi0.5Mn1.5O4 particles modified by nano-Y2O3 coating. J Solid State Electrochem 19, 1235–1246 (2015). https://doi.org/10.1007/s10008-015-2743-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2743-9

Keywords

Navigation