Skip to main content
Log in

Ion exchange ability of N-octylpyridinium hexafluorophosphate in carbon ionic liquid electrode for efficient adsorptive preconcentration and selective determination of ultratrace gold chlorocomplexes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new application of a carbon ionic liquid electrode (CILE) has been explored for preconcentration and quantification of trace amount of Au(III) chlorocomplexes. The procedure is based on the accumulation of tetrachloroaurate complexes at the electrode surface under an open circuit potential condition followed by cyclic voltammetry (CV) and differential pulse cathodic stripping voltammetry (DPCSV). An ion exchange mechanism has been proposed for efficient and fast accumulation of Au(III) chlorocomplexes. Effects of different experimental parameters such as electrolyte concentration, pH, and preconcentration time on the voltammetric signals were investigated. It was found that under the optimized experimental conditions, the linear range of measurement and the detection limit were 5.00 × 10−9–2.25 × 10−6 and 0.80 × 10−9 mol L−1, respectively. Possible interference from coexisting ions was also studied. The procedure was applied for determination of gold in water and human blood serum samples, and acceptable accuracy was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sadler PJ, Sue RE (1994) The chemistry of gold drugs. WC1H 0PP, London

  2. Bergamini MF, Santos DP, Zanoni MVB (2009) J Braz Chem Soc 20:100–106

    Article  CAS  Google Scholar 

  3. Kalcher K (1986) Fresenius J Anal Chem 325:181–185

    Article  CAS  Google Scholar 

  4. Cai X, Kalcher K, Neuhold C, Diewald W, Magee RJ (1993) Analyst 118:53–57

    Article  CAS  Google Scholar 

  5. Kalcher K, Greschonig H, Pietsch R (1987) Fresenius J Anal Chem 327:513–517

    Article  CAS  Google Scholar 

  6. Vytras K, Svancara I, Renger F, Srey M, Vankova R, Hvizdalova M (1993) Collect Czech Chem Commun 58:2039–2042

    Article  CAS  Google Scholar 

  7. Kolbl G, Kalcher K, Voulgaropoulos A (1992) Fresenius J Anal Chem 342:83–86

    Article  Google Scholar 

  8. Gao Z, Li P, Dong S, Zhao Z (1990) Anal Chim Acta 232:367–376

    Article  CAS  Google Scholar 

  9. Peng T, Li H, Wang S (1993) Analyst 118:1321–1324

    Article  CAS  Google Scholar 

  10. Wang C, Zhang H, Sun Y, Li H (1998) Anal Chim Acta 361:133–139

    Article  CAS  Google Scholar 

  11. Navratilova Z, Kula P (2000) Fresenius J Anal Chem 367:369–372

    Article  CAS  Google Scholar 

  12. Lack B, Duncan J, Nyokong T (1999) Anal Chim Acta 385:393–399

    Article  CAS  Google Scholar 

  13. Kavanoz M, Gulce H, Yildiz A (2004) Turk J Chem 28:287–297

    CAS  Google Scholar 

  14. Alarnes-Varela G, Costa-Garcia A (1997) Electroanalysis 9:1262–1266

    Article  CAS  Google Scholar 

  15. Ye R, Khoo SB (1999) Analyst 124:353–360

    Article  CAS  Google Scholar 

  16. Maleki N, Safavi A, Tajabadi F (2006) Anal Chem 78:3820–3826

    Article  CAS  Google Scholar 

  17. Safavi A, Maleki N, Momeni S, Tajabadi F (2008) Anal Chim Acta 625:8–12

    Article  CAS  Google Scholar 

  18. Safavi A, Maleki N, Moradlou O (2008) Electroanalysis 20:2158–2162

    Article  CAS  Google Scholar 

  19. Maleki N, Safavi A, Tajabadi F (2007) Electroanalysis 19:2247–2250

    Article  CAS  Google Scholar 

  20. Safavi A, Maleki N, Moradlou O, Tajabadi F (2006) Anal Biochem 359:224–229

    Article  CAS  Google Scholar 

  21. Safavi A, Maleki N, Ershadifar H, Tajabadi F (2010) Anal Chim Acta 674:176–181

    Article  CAS  Google Scholar 

  22. Safavi A, Maleki N, Tajabadi F (2007) Analyst 132:54–58

    Article  CAS  Google Scholar 

  23. Kula P, Navratilova Z (2001) Electroanalysis 13:795–798

    Article  CAS  Google Scholar 

  24. Mironov IV, Makotchenko EV (2009) J Solution Chem 38:725–737

    Article  CAS  Google Scholar 

  25. Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  26. Wang S, Qian K, Bi XZ, Huang W (2009) J Phys Chem C 113:6505–6510

    Article  CAS  Google Scholar 

  27. Zare HR, Golabi SM (1999) J Electroanal Chem 464:14–23

    Article  CAS  Google Scholar 

  28. Ingle JD, Crouch SR (1988) Spectrochemical analysis. Prentice-Hall Inc, USA

    Google Scholar 

  29. Turyan I, Mandler D (1993) Anal Chem 65:2089–2209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support of this work by Shiraz University Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghodratollah Absalan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Absalan, G., Akhond, M. & Ershadifar, H. Ion exchange ability of N-octylpyridinium hexafluorophosphate in carbon ionic liquid electrode for efficient adsorptive preconcentration and selective determination of ultratrace gold chlorocomplexes. J Solid State Electrochem 19, 1113–1121 (2015). https://doi.org/10.1007/s10008-014-2720-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2720-8

Keywords

Navigation