Skip to main content
Log in

Controlled electrochemical synthesis of yttrium (III) hexacyanoferrate micro flowers and their composite with multiwalled carbon nanotubes, and its application for sensing catechin in tea samples

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report the hierarchical growth of yttrium (III) hexacyanoferrate (YHCF), having a shape that resembles that of rose flower petals on a glassy carbon electrode (GCE) modified with functionalized multiwalled carbon nanotubes. The modified GCE displays excellent electrocatalytic activity toward catechin (CA) oxidation. The morphology and impedimetric response of YHCF were optimized by controlling the number of depositing cycles. As-synthesized YHCF micro flower was characterized by thin film X-ray diffraction (XRD) and infrared (IR) spectroscopic methods, respectively. By taking the advantage of a template-free, surfactant-less, and simple procedure, YHCF micro flowers have been prepared. The sensitivity and low detection limit of functionalized multiwalled carbon nanotube (fMWCNT)/YHCF/GCE toward CA are 1.311 μA μM−1 cm−2 and 0.28 μM, respectively. Moreover, the fabricated GCE exhibits sufficient recovery for CA determination in green tea and oolong tea samples.

Schematic representation of electrochemical synthesis of YHCF microflower on fMWCNT modified GCE

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian blue. J Electrochem Soc 125:866–867

    Article  Google Scholar 

  2. Reddy SJ, Dostal A, Scholz F (1996) Solid state electrochemical studies of mixed nickel-iron hexacyanoferrates with the help of abrasive stripping voltammetry. J Electroanal Chem 403:209–212

    Article  Google Scholar 

  3. Majidi MR, Zeynali KA, Shahmoradi K, Shivaeefar Y (2010) Electrochemical characteristics of a copper hexacyanoferrate (CuHCNF) modified composite carbon electrode and its application toward sulfite oxidation. J Chin Chem Soc 57:391–398

    CAS  Google Scholar 

  4. Narayanan SS, Scholz F (1999) A comparative study of the electrocatalytic activities of some metal hexacyanoferrates for the oxidation of hydrazine. Electroanalysis 11:465–469

    Article  CAS  Google Scholar 

  5. Razmi H, Taghvimi (2010) A tin hexacyanoferrate nanoparticles based electrochemical sensor for selective and high sensitive determination of H2O2 in acidic media. Int J Electrochem Sci 5:751–762

    CAS  Google Scholar 

  6. Chen SM, Liao CJ (2004) Preparation and characterization of osmium hexacyanoferrate films and their electrocatalytic properties. Electrochim Acta 50:115–125

    Article  CAS  Google Scholar 

  7. Chen SM, Peng KT, Lin KC (2005) Preparation of thallium hexacyanoferrate film and mixed-film modified electrodes with cobalt (II) hexacyanoferrate. Electroanalysis 17:319–326

    Article  CAS  Google Scholar 

  8. Ali SR, Bansal VK, Khan AA, Jain SK, Ansari MA (2009) Growth of zinc hexacyanoferrate nanocubes and their potential as heterogeneous catalyst for solvent-free oxidation of benzyl alcohol. J Mol Catal A Chem 303:60–64

    Article  CAS  Google Scholar 

  9. Chen SM (1996) Electrocatalytic oxidation of thiosulfate by metal hexacyanoferrate film modified electrodes. J. Electroanal Chem 417:145–153

    Article  CAS  Google Scholar 

  10. Feng LD, Gu MM, Yang YL, Liang GX, Zhang JR, Zhu JJ (2009) Electrochemical synthesis for flowerlike and fusiform christmas-tree-like cerium hexacyanoferrate(II). J Phys Chem C 113:8743–8749

    Article  CAS  Google Scholar 

  11. Sun Y, Zhou W, Zhao D, Chen J, Li X, Feng L (2012) Electrochemical synthesis for carambolalike and multilayered flowerlike holmium hexacyanoferrate(II) and its fluorescent properties. Int J Electrochem Sci 7:7555–7566

    CAS  Google Scholar 

  12. Rajkumar M, Devadas B, Chen SM (2013) Electrochemical synthesis of dysprosium hexacyanoferrate micro stars incorporated multi walled carbon nanotubes and its electrocatalytic applications. Electrochim Acta 105:439–446

    Article  CAS  Google Scholar 

  13. Liu SQ, Chen HY (2002) Spectroscopic and voltammetric studies on a lanthanum hexacyano ferrate modified electrode. J Electroanal Chem 528:190–195

    Article  CAS  Google Scholar 

  14. Mullica DF, Herbert O, Perkins EL, Agrossie SD (1988) Synthesis and structural study of samarium hexacyanoferrate (III) tetrahydrate, SmFe(CN)6 4H20. J Solid State Chem 74:9–15

    Article  CAS  Google Scholar 

  15. Periasamy AP, Wei JX, Chen SM (2011) Alcohol Dehydrogenase Immobilized at Cerium Hexacyanoferrate (II) Nanoparticles Incorporated Poly-Lysine Film for Voltammetric Ethanol Determination. Int J Electrochem Sci 6:4422–4437

    CAS  Google Scholar 

  16. Devadas B, Rajkumar M, Chen SM, Saraswathi R (2012) Electrochemically reduced graphene oxide/neodymium hexacyanoferrate modified electrodes for the electrochemical detection of paracetomol. Int J Electrochem Sci 7:3339–3349

    Google Scholar 

  17. Liu Y, Yang Z, Zhong Y, Yu J (2010) Construction of europium hexacyanoferrate film and its electrocatalytic activity to tyrosine determination. Appl Surf Sci 256:3148–3154

    Article  CAS  Google Scholar 

  18. Golabi SM, Noor-Mohammadi F (1998) Electrocatalytic oxidation of hydrazine at cobalt hexacyanoferrate modified glassy carbon electrode, Pt and Au electrode. J Solid State Electrochem 2:30–37

    Article  CAS  Google Scholar 

  19. Wang P, Jing X, Wang P, Jing X, Zhang W, Zhu G (2001) Renewable manganous hexacyanoferrate-modified graphite organosilicate composite electrode and its electrocatalytic oxidation of L-cysteine. J Solid State Electrochem 5:369–374

    Article  CAS  Google Scholar 

  20. Wu P, Cai C (2004) The solid state electrochemistry of samarium (III) hexacyanoferrate (II). J Solid State Electrochem 8:538–543

    Article  CAS  Google Scholar 

  21. Wu P, Cai C (2005) The solid state electrochemistry of dysprosium (III) hexacyanoferrate (II). Electroanalysis 17:1583–1588

    Article  CAS  Google Scholar 

  22. Wu P, Shi Y, Cai C (2006) Electrochemical preparation and characterization of dysprosium hexacyanoferrate modified electrode. J Solid State Electrochem 10:270–276

    Article  CAS  Google Scholar 

  23. Sheng QL, Yu H, Zheng JB (2008) Solid state electrochemical of the erbium hexacyanoferrate-modified carbon ceramic electrode and its electrocatalytic oxidation of L-cysteine. J Solid State Electrochem 12:1077–1084

    Article  CAS  Google Scholar 

  24. Qu L, Yang S, Li G, Yang R, Li J, Yu L (2011) Preparation of yttrium hexacyanoferrate/carbon nanotube/Nafion nanocomposite film-modified electrode: application to the electrocatalytic oxidation of l-cysteine. Electrochim Acta 56:2934–2940

    Article  CAS  Google Scholar 

  25. Gil DM, Navarro MC, Lagarrigue MC, Guimpel J, Carbonio RE, Gómez MI (2011) Crystal structure refinement, spectroscopic study and magnetic properties of yttrium hexacyanoferrate (III). J Mol Struc 1003:129–133

    Article  CAS  Google Scholar 

  26. Roka A, Varga I, Inzelt GO (2006) Electrodeposition and dissolution of yttrium-hexacyanoferrate layers. Electrochim Acta 51:6243–6250

    Article  CAS  Google Scholar 

  27. Rodrigo I, Loreto C, Pía R, Danilo A, Alvaro PN (2011) Postharvest sensory and phenolic characterization of elegant lady and carson peaches Chilean. J Agric Res 71:445–451

    Google Scholar 

  28. Chung SY, Jihyeung J, Gary L, Hang X, Xingpei H, Shengmin S, Joshua DL (2008) Cancer prevention by tea and tea polyphenols. Asia Pac J Clin Nutr 17:245–248

    Google Scholar 

  29. Yang CS, Wang ZY (1993) Tea and cancer. J Natl Cancer Inst 85:1038–1049

    Article  CAS  Google Scholar 

  30. Carmen C, Rafael GM, Carmen LP (2003) Determination of tea components with antioxidant activity. J Agric Food Chem 51:4427–4435

    Article  Google Scholar 

  31. Yusuf Y (2006) Novel uses of catechins in foods. Trends Food Sci Technol 17:64–71

    Article  Google Scholar 

  32. Zare H, Habibirad AM (2006) Electrochemistry and electrocatalytic activity of catechin film on a glassy carbon electrode toward the oxidation of hydrazine. J Solid State Electrochem 10:348–359

    Article  CAS  Google Scholar 

  33. He JB, Zhou Y, Meng FS (2009) Time-derivative cyclic voltabsorptometry for voltammetric characterization of catechin film on a carbon-paste electrode:one voltammogram becomes four. J Solid State Electrochem 13:679–685

    Article  CAS  Google Scholar 

  34. Yuegang Z, Hao C, Yiwei D (2002) simultaneous determination of catechins, caffeine, and gallic acid in green, oolang, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 57:307–316

    Article  Google Scholar 

  35. Natale AS, Loredana S, Giuseppina A, Francesca S, Giuseppe R (2008) Simultaneous determination of catechins, rutin, and gallic acid in Cistus species extracts by HPLC with diode array detection. J Chromatogr Sci 46:150–156

    Article  Google Scholar 

  36. Albert RP, Harold NG, Seymour G, Howard M, Jorge GG (1969) Analysis of tea flavanols by gas chromatography of their trimethylsilyl derivatives. Anal chem 41:298–302

    Article  Google Scholar 

  37. Zhang MH, Luypaert J, Fernandez Pierna JA, Xu QS, Massart DL (2004) Determination of total antioxidant capacity in green tea by near-infrared spectroscopy and multivariate calibration. Talanta 62:25–35

    Article  CAS  Google Scholar 

  38. Fernandes SC, De-Bo Renata EI-Hage M, Ademir Dos A, Ademir N, Gustavo AM, Iolanda CV (2008) Determination of catechin in green tea using a catechol oxidase biomimetic sensor. J Braz Chem Soc 19:1215–1223

    Article  CAS  Google Scholar 

  39. Tsai TH, Huang YC, Chen SM (2011) Manganese hexacyanoferrate with poly(3,4-ethylenedioxythiophene hybrid film modified electrode for the determination of catechin and melatonin. Int J Electrochem Sci 6:3238–3253

    CAS  Google Scholar 

  40. Alexander G, Craig EB, Richard GC (2006) Electroanalytical sensing of green tea anticarcinogenic catechin compounds: epigallocatechin gallate and epigallocatechin. Electroanalysis 18:849–853

    Article  Google Scholar 

  41. Wang XG, Jing L, Fan YJ (2010) Fast detection of catechin in tea beverage using a poly-aspartic acid film based sensor. Microchim Acta 169:173–179

    Article  CAS  Google Scholar 

  42. Markovich I, Mandler D (2000) The effect of an alkylsilane monolayer on an indium tin oxide surface on the electrochemistry of hexacyanoferrate. J Electroanal Chem 484:194–202

    Article  CAS  Google Scholar 

  43. Janeiro P, Brett AMO (2004) Catechin electrochemical oxidation mechanisms. Anal Chim Acta 518:109–115

    Article  CAS  Google Scholar 

  44. Kulesza PJ, Brajter K, Dabek-Zlotorzynska E (1987) Application of chelate-forming resin and modified glassy carbon electrode for selective determination of iron (III) by liquid chromatography with electrochemical detection. Anal Chem 59:2776–2780

    Article  CAS  Google Scholar 

  45. Moccelini SK, Fernandes SC, Camargo TP, Neves A, Vieira IC (2009) Self-assembled onolayer of nickel(II) complex and thiol on gold electrode for the determination of catechin. Talanta 78:1063

    Article  CAS  Google Scholar 

  46. Rahman MA, Noh HB, Shim YB (2008) Direct electrochemistry of laccase immobilized on Au nanoparticles encapsulated-dendrimer bonded conducting polymer: application for a catechin sensor. Anal Chem 80:8020–8027

    Article  CAS  Google Scholar 

  47. Jarosz-Wilkolazka A, Ruzgas T, Gorton L (2004) Use of laccase modified electrode for amperometric detection of plant flavonoids. Enzyme Microb Technol 35:238

    Article  CAS  Google Scholar 

  48. Wu J, Wang H, Fu L, Chen Z, Jiang JH, Shen G, Yu R (2005) Detection of catechin based on its electrochemical autoxidation. Talanta 65:511

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Ministry of Science and Technology, Taiwan (ROC). The authors are grateful to Dr. Arun Prakash Periasamy for his valuable suggestion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 391 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devadas, B., Chen, SM. Controlled electrochemical synthesis of yttrium (III) hexacyanoferrate micro flowers and their composite with multiwalled carbon nanotubes, and its application for sensing catechin in tea samples. J Solid State Electrochem 19, 1103–1112 (2015). https://doi.org/10.1007/s10008-014-2715-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2715-5

Keywords

Navigation