Skip to main content
Log in

Study of electrode processes and deposition of cobalt thin films from ionic liquid analogues based on choline chloride

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The cathodic processes of cobalt ion in ionic liquids consisting in binary mixtures of choline chloride (ChCl) with urea, ethylene glycol, malonic acid or oxalic acid were investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The as-received hexahydrate cobalt chloride has been the precursor of cobalt ionic species. It was found that the reduction mechanism of Co2+ in ChCl-urea and ChCl-ethylene glycol is a quasi-reversible (or with high degree of irreversibility at high scan rate) and diffusion controlled process, whereas in ChCl-carboxilic acid solvents the cathodic process of Co2+ is overlapped with reduction of protons. By using Pt and vitreous carbon electrodes, one has computed the value for the Co2+ diffusion coefficient in ChCl-urea at 80 °C; in comparison with values obtained in aqueous solutions, this is up to two orders of magnitude lower. The paper also describes preliminary experiments concerning electrodeposition of cobalt thin films on copper substrate from the four ionic liquid analogue solvents containing choline chloride. The crystalline morphology and structural constitution of Co deposits were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Good results regarding the quality and cobalt content in films were obtained for Co deposits using ChCl-urea or ChCl-ethylene glycol mixtures as solvents. The behaviour of Co films grown from these media was typical for a ferromagnetic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mendoza-Huizar LH, Rios-Reyes CH (2011) J Solid State Electrochem 15(4):737–745

    Article  CAS  Google Scholar 

  2. Mendoza-Huizar LH, Rios-Reyes CH (2012) J Solid State Electrochem 16(9):2899–2906

    Article  CAS  Google Scholar 

  3. Mendoza-Huizar LH, Rios-Reyes CH (2013) Cent Eur J Chem 11(8):1381–1392

    Article  CAS  Google Scholar 

  4. Rios-Reyes CH, Mendoza-Huizar LH, Reyes-Cruz VE, Rodriguez MAV (2013) Quim Nova 36(7):978–983

    Article  CAS  Google Scholar 

  5. Prasad KA, Giridhar P, Ravidran V, Muralidharan VS (2001) J Solid State Electrochem 6:63–68

    Article  CAS  Google Scholar 

  6. Krastev I, Dobrovolska T, Lacnjevac U, Nineva S (2012) J Solid State Electrochem 16:3449–3456

    Article  CAS  Google Scholar 

  7. Zhou QF, Lu LY, Yu LN, Xu XG, Jiang Y (2013) Electrochim Acta 106:258–263

    Article  CAS  Google Scholar 

  8. Cui CQ, Jiang SP, Tseung ACC (1991) J Electrochem Soc 138:94–100

    Article  CAS  Google Scholar 

  9. Suzaki A, Watanabe T (2000) J Jpn Inst Metals 64(10):869–877

    CAS  Google Scholar 

  10. Yamamoto H, Morishita M, Mizuta Y, Masubuchi A (2012) Surf Coat Technol 206:3415–3420

    Article  CAS  Google Scholar 

  11. Carlin RT, De Long HC, Fuller J, Trulove PC (1998) J Electrochem Soc 145:1598–1607

    Article  CAS  Google Scholar 

  12. Chen P-Y, Sun I-W (2001) Electrochim Acta 46:1169–1177

    Article  CAS  Google Scholar 

  13. An MZ, Yang PX, Su CN, Nishikata A, Tsuru T (2008) Chin J Chem 26(7):1219–1224

    Article  CAS  Google Scholar 

  14. Freyland W, Zell CA, El Abedin SZ, Endres F (2003) Electrochim Acta 48(20–22):3053–3061

    Article  CAS  Google Scholar 

  15. Lin LG, Yan JW, Wang Y, Fu YC, Mao BW (2006) J Exp Nanosci 1(3):269–278

    Article  CAS  Google Scholar 

  16. Schaltin S, Nockeman P, Thijs B, Binnemans K, Fransaer J (2007) Electrochem Solid State Lett 10:D104–D107

    Article  CAS  Google Scholar 

  17. Yang PX, An MZ, Su CN, Wang FP (2008) Electrochim Acta 54:763–767

    Article  CAS  Google Scholar 

  18. Su CN, An MZ, Yang PX, Gu HW, Guo XH (2010) Appl Surf Sci 256:4888–4893

    Article  CAS  Google Scholar 

  19. Ali MR, Nishikata A, Tsuru T (2005) Indian J Chem Technol 12:648–653

    CAS  Google Scholar 

  20. Katayama Y, Fukui R, Miura T (2007) J Electrochem Soc 154(10):D534–D537

    Article  CAS  Google Scholar 

  21. Katayama Y, Fukui R, Miura T (2007) ECS Trans 3:287–295

    Article  CAS  Google Scholar 

  22. Fukui R, Katayama Y, Miura T (2011) Electrochim Acta 56:1190–1196

    Article  CAS  Google Scholar 

  23. Ispas A, Buschbeck M, Pitula S, Mudring A, Uhlemann M, Bund A, Endres F (2009) ECS Trans 16(45):119–127

    Article  CAS  Google Scholar 

  24. Abbott AP, Davies DL, Capper G, Rasheed RK, Tambyrajah V (2004) Ionic liquids and their use as solvents, US Patent 2004/0097755 A1 (May 20, 2004)

  25. Yue D, Jia Y, Yao Y, Sun J, Jing Y (2012) Electrochim Acta 65:30–36

    Article  CAS  Google Scholar 

  26. Gomez E, Cojocaru P, Magagnin L, Valles E (2011) J Electroanal Chem 658:18–24

    Article  CAS  Google Scholar 

  27. Cojocaru P, Magagnin L, Gomez E, Valles E (2011) Mater Lett 65:3597–3600

    Article  CAS  Google Scholar 

  28. Guillamat P, Cortes M, Valles E, Gomez E (2012) Surf Coat Technol 206:4439–4448

    Article  CAS  Google Scholar 

  29. Li M, Wang Z, Reddy RG (2014) Electrochim Acta 123(20):325–331

    Article  CAS  Google Scholar 

  30. Abbott AP, Capper G, Davies DL, Rasheed R (2004) Chem Eur J 10:3769–3774

    Article  CAS  Google Scholar 

  31. Abbott AP, Davies GL, Capper G, Rasheed RK, Tambyrajah V (2007) Ionic liquids and their use, US Patent No. 7,196,22 (March 27, 2007)

  32. Srivastava M, Yoganandan G, William Grips VK (2012) Surf Eng 28(6):424–429

    Article  CAS  Google Scholar 

  33. You YH, Gu CD, Wang XL, Tu JP (2012) Surf Coat Technol 206:3632–3638

    Article  CAS  Google Scholar 

  34. Ciocirlan O, Iulian O, Croitoru O (2010) Rev Chim (Bucharest) 61(8):721–723

    CAS  Google Scholar 

  35. Mares (Badea) ML, PhD Thesis, Univ. POLITEHNICA of Bucharest, 2013

  36. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley, New York

    Google Scholar 

  37. Fukui R, Katayama Y, Miura T (2005) Electrochemistry 73:567–569

    CAS  Google Scholar 

  38. Cui CQ, Jiang SP, Tseung ACC (1990) J Electrochem Soc 137(11):3418–3423

    Article  CAS  Google Scholar 

  39. Ribeiro ACF, Lobo VMM, Natividade JJS (2002) J Chem Eng Data 47:539–541

    Article  CAS  Google Scholar 

  40. Ribeiro ACF, Valente AJM, Costa DO, Simoes SMN, Pereira RFP, Lobo VMM, Esteso MA (2010) Electrochim Acta 55(15):4483–4487

    Article  CAS  Google Scholar 

  41. Kaye & Laby Tables of physical and chemical constants, chapter 2.6.6 Magnetic properties of materials, NPL (National Physical Laboratory USA), 19th edition, 1995

Download references

Acknowledgments

One of the authors (M.L. Mares) recognizes the financial support from the European Social Fund through POSDRU/107/1.5/S/76813 Romanian Research Project. Part of this work was financially supported under M ERA Net Program, NANOCOATIL 7-082/2013 Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca Cojocaru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cojocaru, A., Mares, M.L., Prioteasa, P. et al. Study of electrode processes and deposition of cobalt thin films from ionic liquid analogues based on choline chloride. J Solid State Electrochem 19, 1001–1014 (2015). https://doi.org/10.1007/s10008-014-2711-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2711-9

Keywords

Navigation