Skip to main content
Log in

A novel sulfur/carbon hollow microsphere yolk−shell composite as a high-performance cathode for lithium sulfur batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A hollow carbon microsphere (HC) material was synthesized by hydrothermal method, which could be used as a potential hard template. Active sulfur is encapsulated into the hollow carbon microspheres via simple impregnation and heat treatments to design a sulfur−hollow carbon microsphere (S−HC) composite with the novel yolk−shell structure. The hollow carbon shell, acts as a conductor to provide a highly conductivity and short Li+ diffusion distance, as well as absorbs polysulfides to improve the cycle ability of the S−HC composite in lithium sulfur (Li−S) batteries. The internal void space inside the shell can accommodate the volumetric expansion of sulfur during lithiation. The initial discharge capacity of S−HC cathode is as high as 1420 mA h g−1 at 0.1 C. After a 100 cycle stability test, the S−HC cathode exhibits still as high as 710 mA h g−1 at 0.2 C. Test results indicate that the S−HC composite is a promising host material for the sulfur cathode in the Li−S battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  2. Ji XL, Lee KT, Nazar LF (2009) Nat Mater 8:500–506

    Article  CAS  Google Scholar 

  3. Suo L, Hu YS, Li H, Armand M, Chen L (2013) Nat Commun 4:1481–1489

    Article  Google Scholar 

  4. Zhang YG, Zhao Y, Konarov A, Gosselink D, Soboleski HG, Chen P (2013) J Power Sources 241:517–521

    Article  CAS  Google Scholar 

  5. Zhang C, Wu HB, Yuan C, Guo Z, Lou XW (2012) Angew Chem Int Ed 51:9592–9595

    Article  CAS  Google Scholar 

  6. Li LY, Chen YX, Guo XD, Zhong BH, Zhong YJ (2014) Electrochim Acta 137:411–415

    Article  CAS  Google Scholar 

  7. Zhang YG, Bakenov Z, Zhao Y, Konarov A, Doan TNL, Malik M, Paron T, Chen P (2012) J Power Sources 208:1–8

    Article  CAS  Google Scholar 

  8. Zu C, Manthiram A (2013) Adv Energy Mater 3:1008–1012

    Article  CAS  Google Scholar 

  9. Wang L, Wang D, Zhang FX, Jin J (2013) Nano Lett 13:4206–4211

    Article  CAS  Google Scholar 

  10. Zhang YG, Bakenov Z, Zhao Y, Konarov A, Doan TNL, Sun KEK, Yermukhambetova A, Chen P (2013) Powder Technol 235:248–255

    Article  CAS  Google Scholar 

  11. Song MS, Han SC, Kim HS, Kim JH, Kim KT, Kang YM, Ahn HJ, Dou SX, Lee JY (2004) J Electrochem Soc 151:A791–A795

    Article  CAS  Google Scholar 

  12. Zhang YG, Zhao Y, Yermukhambetova A, Bakenov Z, Chen P (2013) J Mater Chem A 1:295–301

    Article  CAS  Google Scholar 

  13. Evers S, Nazar LF (2013) Acc Chem Res 5:1135–1143

    Article  Google Scholar 

  14. Cai K, Song MK, Cairns EJ, Zhang Y (2012) Nano Lett 12:6474–6479

    Article  CAS  Google Scholar 

  15. Dörfler S, Hagen M, Althues H, Tübke J, Kaskel S, Hoffmann MJ (2012) Chem Commun 48:4097–4099

    Article  Google Scholar 

  16. Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ (2012) J Am Chem Soc 134:18510–18513

    Article  CAS  Google Scholar 

  17. Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF (2012) Angew Chem Int Ed 51:3591–3595

    Article  CAS  Google Scholar 

  18. Chen SR, Zhai YP, Xu GL, Jiang YX, Zhao D, Li JT, Huang L, Sun SG (2011) Electrochim Acta 26:9549–9555

    Article  Google Scholar 

  19. Zheng SY, Chen Y, Xu Y, Yi F, Zhu Y, Liu Y, Yang J, Wang CS (2013) ACS Nano 7:10995–11003

    Article  CAS  Google Scholar 

  20. Wang C, Wan W, Chen JT, Zhou HH, Zhang XX, Yuan LX, Huang YH (2013) J Mater Chem A 1:1716–1723

    Article  CAS  Google Scholar 

  21. Zhou GM, Pei SF, Li L, Wang DW, Wang SG, Huang K, Yin LC, Li F, Cheng HM (2014) Adv Mater 26:625–631

    Article  CAS  Google Scholar 

  22. Wang W, Li GC, Wang Q, Li GR, Ye SH, Gao XP (2013) J Electrochem Soc 160:A805–A810

    Article  CAS  Google Scholar 

  23. Seh ZW, Li W, Cha JJ, Zheng G, Yang Y, McDowell MT, Hsu PC, Cui Y (2013) Nat Commun 4:1331–1337

    Article  Google Scholar 

  24. Zhou WD, Yu YC, Chen H, DiSalvo FJ, Abruña HD (2013) J Am Chem Soc 135:16736–16743

    Article  CAS  Google Scholar 

  25. White RJ, Tauer K, Antonietti M, Magdalena M (2010) J Am Chem Soc 132:17360–17363

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the financial supports of the National Natural Science Foundation of China (Nos. 21,301,140 and 21,061,130,551), the Natural Science Foundation of Shaanxi Province (Nos. 2012JQ6019 and 2013JM2009), and the Xi’an Industrial Technology Innovation Project-technology transfer promoting program (No. CXY1438-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Wang or Jintao Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, G., Wang, G., Wang, H. et al. A novel sulfur/carbon hollow microsphere yolk−shell composite as a high-performance cathode for lithium sulfur batteries. J Solid State Electrochem 19, 1143–1149 (2015). https://doi.org/10.1007/s10008-014-2710-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2710-x

Keywords

Navigation