Advertisement

Journal of Solid State Electrochemistry

, Volume 18, Issue 12, pp 3307–3315 | Cite as

Polyaniline- and poly(ethylenedioxythiophene)-cellulose nanocomposite electrodes for supercapacitors

  • Soon Yee Liew
  • Wim ThielemansEmail author
  • Darren A. WalshEmail author
Original Paper

Abstract

The formation and characterisation of films of polyaniline (PANI) and poly(ethylenedioxythiophene) (PEDOT) containing cellulose nanocrystals (CNXLs) from cotton are described. PANI/CNXL films were electrodeposited from a solution containing CNXLs, HCl and aniline, while PEDOT/CNXL films were electrodeposited from a solution containing CNXLs, LiClO4 and ethylenedioxythiophene. In each case, incorporation of CNXLs into the electrodepositing polymer film led to the formation of a porous polymer/CNXL nanocomposite structure. The films were characterised using scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge analysis. The specific capacitances of the nanocomposite materials were higher than those of the CNXL-free counterparts (488 F g−1 for PANI/CNXL; 358 F g−1 for PANI; 69 F g−1 for PEDOT/CNXL; 58 F g−1 for PEDOT). The durability of the PANI/CNXL film under potential cycling was slightly better than that of the CNXL-free PANI, while the PEDOT film was slightly more durable than the PEDOT/CNXL film. Using electrodeposition, it was possible to form thick PANI/CNXL films, with total electrode capacitances of 2.07 F cm−2 and corresponding specific capacitances of 440 F g−1, demonstrating that this particular nanocomposite may be promising for the construction of high-performance supercapacitors.

Keywords

Supercapacitor Conducting polymer Capacitance Electrochemical impedance spectroscopy Cyclic voltammetry Porous materials 

Notes

Acknowledgments

We thank the UK Engineering and Physical Sciences Research Council (EPSRC) for funding this work through the DICE (Driving Innovation in Chemistry and Chemical Engineering) Project under the Science and Innovation Award (Grant Number EP/D501229/1). SYL thanks the University of Nottingham for a Dean of Engineering International Research Scholarship and Professor Stephen Fletcher for helpful discussions on impedance artefacts.

Supplementary material

10008_2014_2669_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 2119 kb)

References

  1. 1.
    Simon P, Gogotsi Y (2008) Nat Mater 7:845–854CrossRefGoogle Scholar
  2. 2.
    Kotz R, Carlen M (2000) Electrochim Acta 45:2483–2498CrossRefGoogle Scholar
  3. 3.
    Fletcher S, Black VJ, Kirkpatrick I (2014) J Solid State Electrochem 18:1377–1387CrossRefGoogle Scholar
  4. 4.
    Frackowiak E (2007) Phys Chem Chem Phys 9:1774–1785CrossRefGoogle Scholar
  5. 5.
    Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Nat Mater 5:987–994CrossRefGoogle Scholar
  6. 6.
    Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) J Phys Chem C 113:13103–13107CrossRefGoogle Scholar
  7. 7.
    Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Science 332:1537–1541CrossRefGoogle Scholar
  8. 8.
    Augustyn V, Simon P, Dunn B (2014) Energy Environ Sci 7:1597–1614CrossRefGoogle Scholar
  9. 9.
    Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  10. 10.
    Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) J Power Sources 153:413–418CrossRefGoogle Scholar
  11. 11.
    Wu MQ, Snook GA, Gupta V, Shaffer M, Fray DJ, Chen GZ (2005) J Mater Chem 15:2297–2303CrossRefGoogle Scholar
  12. 12.
    Peng C, Snook GA, Fray DJ, Shaffer MSP, Chen GZ (2006) Chem Commun 4629–4631Google Scholar
  13. 13.
    Chen GZ, Shaffer MSP, Coleby D, Dixon G, Zhou WZ, Fray DJ, Windle AH (2000) Adv Mater 12:522–526CrossRefGoogle Scholar
  14. 14.
    Hasani-Sadrabadi MM, Dashtimoghadam E, Nasseri R, Karkhaneh A, Majedi FS, Mokarram N, Renaud P, Jacob KI (2014) J Mater Chem A 2:11334–11340CrossRefGoogle Scholar
  15. 15.
    Chen H, Armand M, Demailly G, Dolhem F, Poizot P, Tarascon J-M (2008) Chem Sus Chem 1:348–355CrossRefGoogle Scholar
  16. 16.
    Chen H, Armand M, Courty M, Jiang M, Grey CP, Dolhem F, Tarascon J-M, Poizot P (2009) J Am Chem Soc 131:8984–8988CrossRefGoogle Scholar
  17. 17.
    Ren Z, Ward TE, Regan JM (2007) Environ Sci Technol 41:4781–4786CrossRefGoogle Scholar
  18. 18.
    Sugano Y, Vestergaard M, Yoshikawa H, Saito M, Tamiya E (2010) Electroanalysis 22:1688–1694CrossRefGoogle Scholar
  19. 19.
    Li J, Lewis RB, Dahn JR (2007) Electrochem Solid-State Lett 10:A17–A20CrossRefGoogle Scholar
  20. 20.
    Guilminot E, Fischer F, Chatenet M, Rigacci A, Berthon-Fabry S, Achard P, Chainet E (2007) J Power Sources 166:104–111CrossRefGoogle Scholar
  21. 21.
    Bockenfeld N, Jeong SS, Winter M, Passerini S, Balducci A (2013) J Power Sources 221:14–20CrossRefGoogle Scholar
  22. 22.
    Jabbour L, Destro M, Gerbaldi C, Chaussy D, Penazzi N, Beneventi D (2012) J Mater Chem 22:3227–3233CrossRefGoogle Scholar
  23. 23.
    Nyholm L, Nystrom G, Mihranyan A, Stromme M (2011) Adv Mater 23:3751–3769Google Scholar
  24. 24.
    Nystrom G, Razaq A, Stromme M, Nyholm L, Mihranyan A (2009) Nano Lett 9:3635–3639CrossRefGoogle Scholar
  25. 25.
    Weng Z, Su Y, Wang DW, Li F, Du JH, Cheng HM (2011) Adv Energy Mater 1:917–922CrossRefGoogle Scholar
  26. 26.
    Zheng GY, Hu LB, Wu H, Xie X, Cui Y (2011) Energy Environ Sci 4:3368–3373CrossRefGoogle Scholar
  27. 27.
    Kang YJ, Chun SJ, Lee SS, Kim BY, Kim JH, Chung H, Lee SY, Kim W (2012) ACS Nano 6:6400–6406CrossRefGoogle Scholar
  28. 28.
    Yuan LY, Yao B, Hu B, Huo KF, Chen W, Zhou J (2013) Energy Environ Sci 6:470–476CrossRefGoogle Scholar
  29. 29.
    Razaq A, Nyholm L, Sjodin M, Stromme M, Mihranyan A (2012) Adv Energy Mater 2:445–454CrossRefGoogle Scholar
  30. 30.
    Kang YR, Li YL, Hou F, Wen YY, Su D (2012) Nanoscale 4:3248–3253CrossRefGoogle Scholar
  31. 31.
    Zhang XD, Lin ZY, Chen B, Sharma S, Wong CP, Zhang W, Deng YL (2013) J Mater Chem A 1:5835–5839CrossRefGoogle Scholar
  32. 32.
    Liu LL, Niu ZQ, Zhang L, Zhou WY, Chen XD, Xie SS (2014) Adv Mater 26:4855–4862CrossRefGoogle Scholar
  33. 33.
    Yuan L, Xiao X, Ding T, Zhong J, Zhang X, Shen Y, Hu B, Huang Y, Zhou J, Wang ZL (2012) Angew Chem Int Ed 51:4934–4938CrossRefGoogle Scholar
  34. 34.
    Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang W (2012) J Phys Chem C 116:13013–13019CrossRefGoogle Scholar
  35. 35.
    Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Proc Natl Acad Sci U S A 104:13574–13577CrossRefGoogle Scholar
  36. 36.
    Gui Z, Zhu HL, Gillette E, Han XG, Rubloff GW, Hu LB, Lee SB (2013) ACS Nano 7:6037–6046CrossRefGoogle Scholar
  37. 37.
    Niu Q, Gao K, Shao Z (2014) Nanoscale 6:4083–4088CrossRefGoogle Scholar
  38. 38.
    Zhu L, Wu L, Sun Y, Li M, Xu J, Bai Z, Liang G, Liu L, Fang D, Xu W (2014) RSC Adv 4:6261–6266CrossRefGoogle Scholar
  39. 39.
    Bao LH, Li XD (2012) Adv Mater 24:3246–3252CrossRefGoogle Scholar
  40. 40.
    Liang GJ, Zhu LG, Xu J, Fang D, Bai ZK, Xu WL (2013) Electrochim Acta 103:9–14CrossRefGoogle Scholar
  41. 41.
    Dufresne A (2013) Mater Today 16:220–227CrossRefGoogle Scholar
  42. 42.
    Habibi Y, Lucia LA, Rojas OJ (2010) Chem Rev 110:3479–3500CrossRefGoogle Scholar
  43. 43.
    Liew SY, Walsh DA, Thielemans W (2013) RSC Adv 3:9158–9162CrossRefGoogle Scholar
  44. 44.
    Liew SY, Thielemans W, Walsh DA (2010) J Phys Chem C 114:17926–17933CrossRefGoogle Scholar
  45. 45.
    Wu X, Chabot VL, Kim BK, Yu A, Berry RM, Tam KC (2014) Electrochim Acta 138:139–147CrossRefGoogle Scholar
  46. 46.
    Peng C, Jin J, Chen GZ (2007) Electrochim Acta 53:525–537CrossRefGoogle Scholar
  47. 47.
    Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH (2002) Chem Mater 14:1610–1613CrossRefGoogle Scholar
  48. 48.
    Snook GA, Peng C, Fray DJ, Chen GZ (2007) Electrochem Commun 9:83–88CrossRefGoogle Scholar
  49. 49.
    Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) Biomacromolecules 9:57–65CrossRefGoogle Scholar
  50. 50.
    Araki J, Wada M, Kuga S, Okana T (1999) J Wood Sci 45:258–261CrossRefGoogle Scholar
  51. 51.
    Araki J, Wada M, Kuga S, Okano T (1998) Colloids Surf A 142:75–82CrossRefGoogle Scholar
  52. 52.
    Habibi Y, Chanzy H, Vignon MR (2006) Cellulose 13:679–687CrossRefGoogle Scholar
  53. 53.
    Deng ZP, Stone DC, Thompson M (1997) Analyst 122:1129–1138CrossRefGoogle Scholar
  54. 54.
    Alves CR, Herrasti P, Ocon P, Avaca LA, Otero TF (2001) Polymer J 33:255–262CrossRefGoogle Scholar
  55. 55.
    Zhao ZS, Pickup PG (1996) J Electroanal Chem 404:55–60CrossRefGoogle Scholar
  56. 56.
    Gupta V, Miura N (2006) Mater Lett 60:1466–1469CrossRefGoogle Scholar
  57. 57.
    Frackowiak E, Beguin F (2001) Carbon 39:937–950CrossRefGoogle Scholar
  58. 58.
    Yan H, Tomizawa K, Ohno H, Toshima N (2003) Macromol Mater Eng 288:578–584CrossRefGoogle Scholar
  59. 59.
    Fletcher S (2001) Electrochem Commun 3:692–696CrossRefGoogle Scholar
  60. 60.
    Macdonald DD (2006) Electrochim Acta 51:1376–1388CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Manufacturing and Process Technologies Division, Faculty of EngineeringUniversity of NottinghamNottinghamUK
  2. 2.School of ChemistryUniversity of NottinghamNottinghamUK
  3. 3.Renewable Materials and Nanotechnology Research GroupKU Leuven Campus KortrijkKortrijkBelgium

Personalised recommendations