Skip to main content
Log in

Preparation of La2NiO4+δ powders as a cathode material for SOFC via a PVP-assisted hydrothermal route

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Uniform submicron La2NiO4+δ (sm-LNO) powders have been synthesized by a facile polyvinylpyrrolidone (PVP)-assisted hydrothermal route. In the presence of PVP, sm-LNO of pure phase has been obtained by calcination at the relatively low temperature of 900 °C for 8 h. Compared micron-sized LNO (m-LNO) particles obtained at 1,000 °C by hydrothermal synthesis route without PVP assisted, the sm-LNO-PVP displays regularly shaped and well-distributed particles in the range of 0.3–0.5 μm. The scanning electron microscopy (SEM) results showed that the sm-LNO sample is submicronic and that the m-LNO sample shows agglomerates with a broad size distribution. The electrochemical performance of m-LNO and sm-LNO-PVP has been investigated by electrochemical impedance spectroscopy. The polarization resistance of the sm-LNO-PVP cathode reaches a value of 0.40 Ω cm2 at 750 °C, which is lower than that of m-LNO (0.62 Ω cm2). This result indicates that a fine electrode microstructure with submicron particles can help to increase the active sites, accelerate oxygen diffusion, and reduce polarization resistance. An anode-supported single cell with sm-LNO cathode has been fabricated and tested over a temperature range from 650 to 800 °C. The maximum power density of the cell has achieved 834 mW cm−2 at 750 °C. These results therefore show that this PVP-assisted hydrothermal method is an effective approach to construct submicron-structured cathode and enhance the performance of intermediate temperature solid oxide fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wilson JR, Duong AT, Gameiro M, Chen HY, Thornton K, Mumm DR (2009) Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode. Electrochem Commun 11:1052–1056

    Article  CAS  Google Scholar 

  2. Lou Z, Peng J, Dai N, Qiao J, Yan Y, Wang Z (2012) High performance La3Ni2O7 cathode prepared by a facile sol–gel method for intermediate temperature solid oxide fuel cells. Electrochem Commun 22:97–100

    Article  CAS  Google Scholar 

  3. Brandon NP, Skinner S, Steele BCH (2003) Recent advances in materials for fuel cells. Annu Rev Mater Res 33:183–213

    Article  CAS  Google Scholar 

  4. Mauvy F, Bassat JM, Boehm E, Manaud JP, Dordor P, Grenier JC (2003) Oxygen electrode reaction on Nd2NiO4+δ cathode materials: impedance spectroscopy study. Solid State Ionics 158:17–28

    Article  CAS  Google Scholar 

  5. Jo SH, Muralidharan P, Kim DK (2009) Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3O5+δ cathode on Ce1.9Gd0.1O1.95 electrolyte for IT-SOFCs. Electrochem Commun 11:2085–2088

    Article  CAS  Google Scholar 

  6. Shao ZP, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173

    Article  CAS  Google Scholar 

  7. Wang HH, Tablet C, Feldhoff A, Caro J (2005) A cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-δ. Adv Mater 17:1785–1788

    Article  CAS  Google Scholar 

  8. Shen Y, Zhao H, Liu X, Xu N (2010) Preparation and electrical properties of Ca-doped La2NiO4+δ cathode materials for IT-SOFC. Phys Chem Chem Phys 12:15124–15131

    Article  CAS  Google Scholar 

  9. Boehm E, Bassat JM, Dordor P, Mauvy F, Grenier JC, Stevens P (2005) Oxygen diffusion and transport properties in non-stoichiometric Ln2 − xNiO4 + δ oxides. Solid State Ionics 176:2717–2725

    Article  CAS  Google Scholar 

  10. Sayers R, Rieu M, Lenormand P, Ansart F, Kilner JA, Skinner SJ (2011) Development of lanthanum nickelate as a cathode for use in intermediate temperature solid oxide fuel cells. Solid State Ionics 192:531–534

    Article  CAS  Google Scholar 

  11. Skinner SJ, Amow G (2007) Structural observations on La2(Ni, CO)O4 ± δ phases determined from in situ neutron powder diffraction. J Solid State Chem 180:1977–1983

    Article  CAS  Google Scholar 

  12. Aguadero A, Escudero MJ, Perez M, Alonso JA, Daza L (2007) Hyperstoichiometric La1.9Sr0.1NiO4+δ mixed conductor as novel cathode for intermediate temperature solid oxide fuel cells. J Fuel Cell Sci Tech 4:294–298

    Article  CAS  Google Scholar 

  13. Zhao K, Xu Q, Huang D-P, Chen M, Kim B-H (2012) Electrochemical evaluation of La2NiO4+δ-based composite electrodes screen-printed on Ce0.8Sm0.2O1.9 electrolyte. J Solid State Electrochem 16:2797–2804

    Article  CAS  Google Scholar 

  14. Laberty C, Zhao F, Swider-Lyons KE, Virkar AV (2007) High-performance solid oxide fuel cell cathodes with lanthanum-nickelate-based composites. Electrochem Solid State Lett 10:B170–B174

    Article  CAS  Google Scholar 

  15. Weng XL, Boldrin P, Abrahams I, Skinner SJ, Kellici S, Darr JA (2008) Direct syntheses of Lan+1NinO3n+1 phases (n =1, 2, 3 and infinity) from nanosized co-crystallites. J Solid State Chem 181:1123–1132

    Article  CAS  Google Scholar 

  16. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  17. Levy E (2004) Materials science at the small scale. Adv Mater 16:1879–1880

    Article  CAS  Google Scholar 

  18. Bellino MG, Sacanell JG, Lamas DG, Leyva AG, Walsoe de Reca NE (2007) High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes. J Am Chem Soc 129:3066–3067

    Article  CAS  Google Scholar 

  19. Zhang N, Li J, He Z, Sun K (2011) Preparation and characterization of nano-tube and nano-rod structured La0.8Sr0.2MnO3-δ/Zr0.92Y0.08O2 composite cathodes for solid oxide fuel cells. Electrochem Commun 13:570–573

    Article  CAS  Google Scholar 

  20. Zhou X, Sun K, Gao J, Le S, Zhang N, Wang P (2009) Microstructure and electrochemical characterization of solid oxide fuel cells fabricated by co-tape casting. J Power Sources 191:528–533

    Article  CAS  Google Scholar 

  21. Jiang Z, Lei Z, Ding B, Xia C, Zhao F, Chen F (2010) Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La, Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones. Int J Hydrogen Energy 35:8322–8330

    Article  CAS  Google Scholar 

  22. Jiang P, Li S-Y, Xie S-S, Gao Y, Song L (2004) Machinable long PVP-stabilized silver nanowires. Chem Eur J 10:4817–4821

    Article  CAS  Google Scholar 

  23. Amow G, Davidson IJ, Skinner SJ (2006) A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n =1, 2 and 3), for solid-oxide fuel-cell cathode applications. Solid State Ionics 177:1205–1210

    Article  CAS  Google Scholar 

  24. Zhao H, Mauvy F, Lalanne C, Bassat J, Fourcade S, Grenier JC (2008) New cathode materials for IT-SOFC: phase stability, oxygen exchange and cathode properties of La2−xNiO4+δ. Solid State Ionics 179:2000–2005

    Article  CAS  Google Scholar 

  25. Montenegro-Hernández A, Vega-Castillo J, Mogni L, Caneiro A (2011) Thermal stability of Ln2NiO4+δ (Ln: La, Pr, Nd) and their chemical compatibility with YSZ and CGO solid electrolytes. Int J Hydrogen Energy 36:15704–15714

    Article  Google Scholar 

  26. Escudero MJ, Aguadero A, Alonso JA, Daza L (2007) A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy. J Electroanal Chem 611:107–116

    Article  CAS  Google Scholar 

  27. Mauvy F, Lalanne C, Bassat JM, Grenier JC, Zhao H, Huo L (2006) Electrode properties of Ln2NiO4 + δ (Ln = La, Nd, Pr): AC impedance and DC polarization studies. J Electrochem Soc 153(8):A1547–A1553

    Article  CAS  Google Scholar 

  28. Mogensen M, Skaarup S (1996) Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ionics 86–88:1151–1160

    Article  Google Scholar 

  29. Pérez-Coll D, Aguadero A, Escudero MJ, Nunez P, Daza L (2008) Optimization of the interface polarization of the La2NiO4-based cathode working with the Ce1-xSmxO2-δ electrolyte system. J Power Sources 178:151–162

    Article  Google Scholar 

  30. Chen M, Moon BH, Kim SH, Kim BH, Xu Q, Ahn BG (2012) Characterization of La0.6Sr0.4Co0.2Fe0.8O3-δ + La2NiO4+δ composite cathode materials for solid oxide fuel cells. Fuel Cells 12:86–96

    Article  CAS  Google Scholar 

  31. Tsipis EV, Kharton VV, Frade JR (2007) Electrochemical behavior of mixed-conducting oxide cathodes in contact with apatite-type La10Si5AlO26.5 electrolyte. Electrochim Acta 52:4428–4435

    Article  CAS  Google Scholar 

  32. Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104:4791–4843

    Article  CAS  Google Scholar 

  33. Fu YP (2011) Electrochemical performance of La0.9Sr0.1Co0.8Ni0.2O3-δ-Ce0.8Sm0.2O1.9 composite cathode for solid oxide fuel cells. Int J Hydrogen Energy 36:5574–5580

    Article  CAS  Google Scholar 

  34. Esquirol A, Brandon NP, Kilner JA, Mogensen M (2004) Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3cathodes for intermediate-temperature SOFCs. J Electrochem Soc 151(11):A1847–A1855

    Article  CAS  Google Scholar 

  35. Zhou W, Shao Z, Liang F, Chen Z-G, Zhu Z, Jin W (2011) A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration. J Mater Chem 21:15343–15351

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21376001) and the Beijing Higher Education Young Elite Teacher Project (YETP1205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenhua Wang or Kening Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Z., Hao, X., Peng, J. et al. Preparation of La2NiO4+δ powders as a cathode material for SOFC via a PVP-assisted hydrothermal route. J Solid State Electrochem 19, 957–965 (2015). https://doi.org/10.1007/s10008-014-2667-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2667-9

Keywords

Navigation