Skip to main content
Log in

Facile fabrication of GNS/NiCoAl-LDH composite as an advanced electrode material for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Graphene nanosheet and ternary-component nickel cobalt aluminum-layered double hydroxide composite (GNS/NiCoAl-LDH) has been successfully fabricated by a facile assembly method. The NiCoAl-LDH flakes homogeneously distribute on the surfaces of GNS, forming a three-dimensional nanosheets array structure. Electrochemical properties are characterized by cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy. The influence of GNS doped content on the electrochemical behavior of GNS/NiCoAl-LDH composite has been studied. The result indicate that when the GNS content is 3.0 %, the GNS/NiCoAl-LDH composite electrode exhibits a maximum specific capacitance of 1,962 F g−1 at 1 A g−1 and remains at 1,180 F g−1 even at a high current density of 10 A g−1. After 2,000 cycles, the composite electrode keeps a remarkable specific capacitance of 1,260 F g−1 at 5 A g−1. The enhanced electrochemical performances of the composite are attributed to the highly electron conductivity and large specific surface area of the graphene nanosheets. This newly designed GNS/NiCoAl-LDH composite may offer a promising electrode material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Science 321:651–652

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  3. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  4. Liu MX, Gan LH, Xiong W, Xu ZJ, Zhu DZ, Chen LW (2014) J Mater Chem A 2:2555–2562

    Article  CAS  Google Scholar 

  5. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Phys Chem Chem Phys 13:17615–17624

    Article  CAS  Google Scholar 

  6. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Nat Mater 5:987–994

    Article  CAS  Google Scholar 

  7. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) J Power Sources 101:109–116

    Article  CAS  Google Scholar 

  8. Chen W, Fan Z, Gu L, Bao X, Wang C (2010) Chem Commun 46:3905–3907

    Article  CAS  Google Scholar 

  9. Yang S, Wu X, Chen C, Dong H, Hu W, Wang X (2012) Chem Commun 48:2773–2775

    Article  CAS  Google Scholar 

  10. Li J, Yang M, Wei J, Zhou Z (2012) Nanoscale 4:4498–4503

    Article  CAS  Google Scholar 

  11. Xia XH, Tu JP, Zhang YQ, Mai YJ, Wang XL, Gu CD, Zhao XB (2012) RSC Adv 2:1835–1841

    Article  CAS  Google Scholar 

  12. Xiao QF, Zhou X (2003) Electrochim Acta 48:575–580

    Article  CAS  Google Scholar 

  13. Li M, Zhu JE, Zhang L, Chen X, Zhang H, Zhang F, Xu S, Evans DG (2011) Nanoscale 3:4240–4246

    Article  CAS  Google Scholar 

  14. Wang L, Wang D, Dong XY, Zhang ZJ, Pei XF, Chen XJ, Chen B, Jin J (2011) Chem Commun 47:3556–3558

    Article  CAS  Google Scholar 

  15. Zhao MQ, Zhang Q, Huang JQ, Wei F (2012) Adv Funct Mater 22:675–694

    Article  CAS  Google Scholar 

  16. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Science 335:1326–1330

    Article  CAS  Google Scholar 

  17. Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P (2004) Carbon 42:1153–1158

    Article  CAS  Google Scholar 

  18. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  19. Zhang LJ, Zhang XG, Shen LF, Gao B, Hao L, Lu XJ, Zhang F, Ding B, Yuan CZ (2012) J Power Sources 199:395–401

    Article  CAS  Google Scholar 

  20. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) ACS Nano 4:1963–1970

    Article  CAS  Google Scholar 

  21. Faour A, Mousty C, Prevot V, Devouard B, De Roy A, Bordet P, Elkaim E, Taviot-Gueho C (2012) J Phys Chem C 116:15646–15659

    Article  CAS  Google Scholar 

  22. Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T (2006) J Am Chem Soc 128:4872–4880

    Article  CAS  Google Scholar 

  23. Sels B, Vos DD, Buntinx M, Pierard F, Kirsch-De Mesmaeker A, Jacobs P (1999) Nature 400:855–857

    Article  CAS  Google Scholar 

  24. Shao M, Ning F, Zhao J, Wei M, Evans DG, Duan X (2012) J Am Chem Soc 134:1071–1077

    Article  CAS  Google Scholar 

  25. He F, Hu ZB, Liu KY, Zhang SR, Liu HT, Sang SB (2014) J Power Sources 267:188–196

    Article  CAS  Google Scholar 

  26. Zhang F, Jiang JW, Yuan CZ, Hao L, Shen LF, Zhang LJ, Zhang XG (2011) J Solid State Electrochem 16:1933–1940

    Article  Google Scholar 

  27. Xu J, Gai S, He F, Niu N, Gao P, Chen Y, Yang P (2014) Dalton Trans 43:11667–11675

    Article  CAS  Google Scholar 

  28. Zhang L, Wang J, Zhu J, Zhang X, San Hui K, Hui KN (2013) J Mater Chem A 1:9046–9053

    Article  CAS  Google Scholar 

  29. Snook GA, Duffy NW, Pandolfo AG (2007) J Power Sources 168:513–521

    Article  CAS  Google Scholar 

  30. Gong M, Li YQ, Zhang HB, Zhang B, Zhou W, Feng J, Wang HL, Liang YQ, Fan ZQ, Liu J, Dai HJ (2014) Energy Environ Sci 7:2025–2032

    Article  CAS  Google Scholar 

  31. Mao M, Wang MM, Hu JY, Lei G, Chen SZ, Liu HT (2013) Chem Commun 49:5301–5303

    Article  CAS  Google Scholar 

  32. Yu C, Yang J, Zhao C, Fan X, Wang G, Qiu J (2014) Nanoscale 6:3097–3104

    Article  CAS  Google Scholar 

  33. Fang J, Li M, Li Q, Zhang W, Shou Q, Liu F, Zhang X, Cheng J (2012) Electrochim Acta 85:248–255

    Article  CAS  Google Scholar 

  34. Xu J, Gai S, He F, Niu N, Gao P, Chen Y, Yang P (2014) J Mater Chem A 2:1022–1031

    Article  CAS  Google Scholar 

  35. Liu Y, Zhang Y, Ma G, Wang Z, Liu K, Liu H (2013) Electrochim Acta 88:519–525

    Article  CAS  Google Scholar 

  36. Zhou Y, Bao Q, Tang L, Zhong Y, Loh KP (2009) Chem Mater 21:2950–2956

    Article  CAS  Google Scholar 

  37. Gao Z, Wang J, Li ZS, Yang WL, Wang B, Hou MJ, He Y, Liu Q, Mann T, Yang PP, Zhang ML, Liu LH (2011) Chem Mater 23:3509–3516

    Article  CAS  Google Scholar 

  38. Yang J, Yu C, Fan XM, Ling Z, Qiu J, Gogotsi Y (2013) J Mater Chem A 1:1963–1968

    Article  CAS  Google Scholar 

  39. Wu ZS, Ren W, Gao L, Liu B, Jiang C, Cheng HM (2009) Carbon 47:493–499

    Article  CAS  Google Scholar 

  40. Pu J, Tong Y, Wang SB, Sheng EH, Wang ZH (2014) J Power Sources 250:250–256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Key Project of Hunan Provincial Science and Technology Plan of China (2014FJ2007), and the Open-End Fund for the Valuable and Precision Instruments of Central South University (CUSZC20140013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiyu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Hu, Z., Liu, K. et al. Facile fabrication of GNS/NiCoAl-LDH composite as an advanced electrode material for high-performance supercapacitors. J Solid State Electrochem 19, 607–617 (2015). https://doi.org/10.1007/s10008-014-2644-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2644-3

Keywords

Navigation