Skip to main content
Log in

Mathematical modeling and experimental study of electrode processes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The purpose of this paper is to propose mathematical modeling of different kinds of electrochemical processes. Electrooxidation of nitrite ions on some types of electrodes (glassy carbon, screen-printed carbon-containing, gold, and gold nanoparticles) and oxidation of ascorbic acid on gold electrodes nonmodified and modified by gold nanoparticles were used for the comparison of calculated and experimental data. It is shown that in each case, a specific shape of the voltammogram helps to identify the mechanism of the process. The comparison of the theoretical and experimental data shows that the process of oxidation of nitrite ions causes passivation of the electrode by adsorbed products of electrooxidation, and nanoeffects are not observed at that. Nanoeffects were observed in the oxidation of ascorbic acid on gold nanoparticles localized on gold electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tau P, Nyokong T (2007) Electrocatalytic oxidation of nitrite by tetra-substituted oxotitanium(IV) phthalocyanines adsorbed or polymerised on glassy carbon electrode. J Electroanal Chem 611(1–2):10–18

    Article  CAS  Google Scholar 

  2. Spataru N, Rao TN, Tryk DA, Fujishima A (2001) Determination of nitrite and nitrogen oxides by anodic voltammetry at conductive diamond electrodes. J Electrochem Soc 148(3):E112–E117

    Article  CAS  Google Scholar 

  3. Kalimuthu P, John SA (2009) Highly sensitive and selective amperometric determination of nitrite using electropolymerized film of functionalized thiadiazole modified glassy carbon electrode. Electrochem Commun 11(5):1065–1068

    Article  CAS  Google Scholar 

  4. Wu ZF, Ma YS, Zhang YL, Xu LS, Chen BH, Yuan Q, Huang WX (2012) Adsorption and surface reaction of NO2 on a stepped Au (997): surface enhanced reactivity of low-coordinated Au atoms. J Phys Chem C 116(5):3608–3617

    Article  CAS  Google Scholar 

  5. Wickham DT, Banse BA, Koel BE (1990) Adsorption of nitrogen dioxide on polycrystalline gold. Catal Lett 6:163–172

    Article  CAS  Google Scholar 

  6. Wang Y, Ward KR, Laborda E, Salter C, Crossley A, Jacobs RMJ, Compton RG (2013) A joint experimental and computational search for authentic nano-electrocatalytic effects: electrooxidation of nitrite and L-ascorbate on gold nanoparticle-modified glassy carbon electrodes. Small 9(3):478–486

    Article  CAS  Google Scholar 

  7. Wang Y, Laborda E, Compton RG (2012) Electrochemical oxidation of nitrite: kinetic, mechanistic and analytical study by square wave voltammetry. J Electroanal Chem 670:56–61

    Article  CAS  Google Scholar 

  8. Li J (2009) Electrocatalytic oxidation of nitrite at gold nanoparticle-polypyrrole nanowire modified glassy carbon electrode. Chin J Chem 27(12):2373–2378

    Article  CAS  Google Scholar 

  9. Huang X, Li YX, Chen YL, Wang L (2008) Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sens Actuators, B 134(2):780–786

    Article  CAS  Google Scholar 

  10. Wang X, Li H, Wu M, Ge SL, Zhu Y, Wang QJ, He PG, Fang YZ (2013) Simultaneous electrochemical determination of sulphite and nitrite by a gold nanoparticle/graphene-chitosan modified electrode. Chin J Anal Chem 41(8):1232–1237

    Article  Google Scholar 

  11. Cui YP, Yang CZ, Zeng W, Oyama M, Pu WH, Zhang JD (2007) Electrochemical determination of nitrite using a gold nanoparticles-modified glassy carbon electrode prepared by the seed-mediated growth technique. Anal Sci 23(12):1421–1425

    Article  CAS  Google Scholar 

  12. Zhang JD, Oyama M (2005) Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: characterization and electroanalytical application. Anal Chim Acta 540(2):299–306

    Article  CAS  Google Scholar 

  13. Brainina KZ, Galperin LG, Galperin AL (2010) Mathematical modeling and numerical simulation of metal nanoparticles electrooxidation. J Solid State Electrochem 14(6):981–988

    Article  CAS  Google Scholar 

  14. Carslow HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, USA

    Google Scholar 

  15. BabenkoYuI (2009) Metod drobnogo differencirovaniya v prikladnyh zadachah teorii teplomassoobmena. Professional, Sankt-Peterburg

    Google Scholar 

  16. Turkevich J, Stevenson PC, Hillier J (1953) The formation of colloidal gold. J Phys Chem 57:670–673

    Article  CAS  Google Scholar 

  17. Jiang YN, Luo HQ, Li NB (2007) Determination of nitrite with a nano-gold modified glassy carbon electrode by cyclic voltammetry. Int J Environ Anal Chem 87(4):295–306

    Article  CAS  Google Scholar 

  18. Piela B, Wrona PK (2002) Oxidation of nitrites on solid electrodes—I. Determination of the reaction mechanism on the pure electrode surface. J Electrochem Soc 149(2):E55–E63

    Article  CAS  Google Scholar 

  19. Rohani T, Taher MA (2009) A new method for electrocatalytic oxidation of ascorbic acid at the Cu(II) zeolite-modified electrode. Talanta 78(3):743–747

    Article  CAS  Google Scholar 

  20. Sivanesan A, Kannan P, John SA (2007) Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode. Electrochim Acta 52(28):8118–8124

    Article  CAS  Google Scholar 

  21. Kreshkov AP (ed) (1971) Osnovy analiticheskoy khimii, vol 2. Khimiâ, Moskva, p 287

    Google Scholar 

  22. Nikolskiî BP (ed) (1966) Spravochnik khimika, vol 1. Khimiâ, Moskva, p 1006

    Google Scholar 

  23. Brainina KZ, Galperin LG, Vikulova EV, Galperin AL (2013) The effect of the system polydispersity on voltammograms of nanoparticles electrooxidation. J Solid State Electrochem 17(1):43–53

    Article  CAS  Google Scholar 

  24. Brainina KZ, Galperin LG, Vikulova EV, Stozhko NY, Murzakaev AM, Timoshenkova OR, Kotov YA (2011) Gold nanoparticles electrooxidation: comparison of theory and experiment. J Solid State Electrochem 15(5):1049–1056

    Article  CAS  Google Scholar 

  25. Karimi MA, Hasheminasab M (2013) Determination of iron(III) in N-methyldiethanolamine media utilized in sweetening plant of gas treating industry by using self-assembled monolayer on gold electrode. Int J Electrochem Sci 8(4):4560–4570

    CAS  Google Scholar 

  26. Nikolskiî NP (ed) (1965) Spravochnik khimika, vol 1. Khimiâ, Moskva, p 383

    Google Scholar 

  27. Kalimuthu P, John SA (2008) Size dependent electrocatalytic activity of gold nanoparticles immobilized onto three dimensional sol-gel network. J Electroanal Chem 617(2):164–170

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their deep gratitude to the financial support of the RFBR (Project # 13-03-00285_a and # 13-00-14148_Ir) and the Ministry of Education and Science of RF (Project # 1458 in the framework of the assignment 4.1458.2014/k).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. Z. Brainina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brainina, K.Z., Galperin, L.G., Bukharinova, M.A. et al. Mathematical modeling and experimental study of electrode processes. J Solid State Electrochem 19, 599–606 (2015). https://doi.org/10.1007/s10008-014-2642-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2642-5

Keywords

Navigation