Skip to main content

Advertisement

Log in

Facile synthesis of wheat bran-derived honeycomb-like hierarchical carbon for advanced symmetric supercapacitor applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel honeycomb-like hierarchical carbon (HHC) derived from wheat bran has been obtained by the facile and environmentally friendly method via hydrothermal carbonization of wheat bran followed by KOH activation process at mild conditions without any template. The prepared carbon has a large Brunauer–Emmett–Teller (BET) surface area of 2,189.2 m2 g−1 and pore volumes of up to 1.1 cm3 g−1. The performance of the HHC as electrodes for electrochemical supercapacitors was evaluated in a symmetric two-electrode cell configuration with 6 M KOH and 1 M TEABF4/AN as the electrolytes. Electrochemical studies show that the supercapacitors based on the as-prepared HHC exhibit an excellent capacitive performance in both aqueous and organic electrolytes. We attribute the outstanding capacitive behavior of HHC to their unique structure and high accessible surface area. Considering that the cost-effective and feasible process, this facile technique presented here will not only provide a promising method for the production of biomass-derived hierarchical carbon but also put forward the application of carbon materials in energy storage and conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2013) Acc Chem Res 46:1094–1103

    Article  CAS  Google Scholar 

  2. Malachi N, Soffer A, Aurbach D (2011) J Solid State Electrochem 15:1563–1578

    Article  Google Scholar 

  3. Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  4. Wei L, Yushin G (2012) Nano Energy 1:552–565

    Article  CAS  Google Scholar 

  5. Kalyani P, Anitha A (2013) Int J Hydrog Energy 38:4034–4045

    Article  CAS  Google Scholar 

  6. Wang HL, Li Z, Mitlin D (2014) Chem Electro Chem 1:332–337

    CAS  Google Scholar 

  7. Wang JC, Kaskel S (2012) J Mater Chem 22:23710–23725

    Article  CAS  Google Scholar 

  8. Hu B, Wang K, Wu LH, Yu SH, Antonietti M, Titirici MM (2010) Adv Mater 22:813–828

    Article  CAS  Google Scholar 

  9. Libra JA, Ro KS, Funke A, Berge ND, Neubauer Y, Titirici MM (2011) Biogeosciences 2:89–124

    Google Scholar 

  10. Zhu H, Wang XL, Yang F, Yang XR (2011) Adv Mater 23:2745–2748

    Article  CAS  Google Scholar 

  11. Wang H, Xu ZW, Kohandehghan A, Li Z, Cui K, Tan XH, Stephenson TJ, King’ondu CK, Holt CMB, Olsen BC, Tak JK, Harfield D, Anyia AO, Mitlin D (2013) ACS Nano 7:5131–5141

    Article  CAS  Google Scholar 

  12. White RJ, Yoshizawa N, Antonietti M, Titirici MM (2011) Green Chem 13:2428–2434

    Article  CAS  Google Scholar 

  13. Titirici MM, Thomas A, Yu SH, Mller JO, Antonietti M (2007) Chem Mater 19:4205–4212

    Article  CAS  Google Scholar 

  14. Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Adv Energy Mater 1:356–361

    Article  CAS  Google Scholar 

  15. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Antonietti M, Titirici MM (2010) Adv Mater 22:5202–5206

    Article  CAS  Google Scholar 

  16. Lv Y, Gan L, Liu M, Xiong W, Xu Z, Zhu D, Wright DS (2012) J Power Sources 209:152–157

    Article  CAS  Google Scholar 

  17. Wang DW, Wang QH, Wang TM (2011) Inorg Chem 50:6482–6492

    Article  CAS  Google Scholar 

  18. Stoller MD, Ruoff RS (2010) Energy Environ Sci 3:1294–301

    Article  CAS  Google Scholar 

  19. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Angew Chem Int Ed 48:7752–7777

    Article  CAS  Google Scholar 

  20. Singh V, Joung D, Zhai L, Das S, Khondaker S, Seal S (2011) Prog Mater Sci 56:1178–1271

    Article  CAS  Google Scholar 

  21. Wang DW, Min YG, Yu YH, Peng B (2014) J Colloid Interface Sci 417:270–277

    Article  CAS  Google Scholar 

  22. Wu FC, Tseng RL, Hu CC, Wang CC (2006) J Power Sources 159:1532–1542

    Article  CAS  Google Scholar 

  23. Li YY, Li ZS, Shen PK (2013) Adv Mater 25:2474–2480

    Article  CAS  Google Scholar 

  24. Kim YJ, Lee BJ, Suezaki H, Chino T, Abe Y, Yanagiura T, Park KC, Endo M (2006) Carbon 44:1592–1595

    Article  CAS  Google Scholar 

  25. Zhang ZJ, Cui P, Chen XY, Liu JW (2013) J Solid State Electrochem 17:1749–1758

    Article  CAS  Google Scholar 

  26. Li XA, Xing W, Zhuo SP, Zhou J, Li F, Qiao SZ, Lu GQ (2011) Bioresour Technol 102:1118–1123

    Article  CAS  Google Scholar 

  27. Yan YF, Cheng QL, Pavlinek V, Saha P, Li CZ (2013) J Solid State Electrochem 17:1677–1684

    Article  CAS  Google Scholar 

  28. Wang DW, Li YQ, Wang QH, Wang TM (2012) Eur J Inorg Chem 628–635

  29. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  30. Wang DW, Min YG, Yu YH, Peng B (2014) Electrochim Acta 141:271–278

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial supports from the National Natural Science Foundation of China (no. 21303257), Director Foundation of Xi’an Institute of Optics and Precision Mechanics (no. Y255F81ZZ0 and Y455A41ZZ0), and Western Light Program of the Chinese Academy of Sciences (no. Y329181213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewei Wang.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http: and is accessible free of charge. It contains additional SEM images, galvanostatic charge–discharge curves, Nyquist impedance plots and cyclic voltammetry curves. Table that summarizes the specific capacitance of some carbonaceous materials in the recent literatures.

ESM 1

(DOC 1908 kb)

(AVI 2325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Min, Y. & Yu, Y. Facile synthesis of wheat bran-derived honeycomb-like hierarchical carbon for advanced symmetric supercapacitor applications. J Solid State Electrochem 19, 577–584 (2015). https://doi.org/10.1007/s10008-014-2639-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2639-0

Keywords

Navigation