Skip to main content
Log in

Effect of particle size on rate capability and cyclic stability of LiNi0.5Mn1.5O4 cathode for high-voltage lithium ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiNi0.5Mn1.5O4 samples with their particle sizes from micro to nano are synthesized via polyvinylpyrrolidone (PVP)-assisted coprecipitation of nickel and manganese hydroxide. Their morphology, structure, and performance as cathode of high-voltage lithium ion battery are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge/discharge test. The characterizations from SEM and XRD show that the particle size of the resulting LiNi0.5Mn1.5O4 is tunable from micro to nano by controlling the concentrations of PVP for the formation of nickel and manganese hydroxide precursor. The results from CV, EIS, and charge/discharge test reveal that reducing the particle size of LiNi0.5Mn1.5O4 results in its less interfacial resistance for lithium insertion/desertion process, leading to its improved rate capability. Meanwhile, the cyclic stability of LiNi0.5Mn1.5O4 is also improved when its particle size is changed from micro to nano, but too smaller particle size is not beneficial to its cyclic stability, especially at elevated temperature. When evaluated in LiNi0.5Mn1.5O4/Li half cell, the resulting LiNi0.5Mn1.5O4 samples of 800, 250, and 125 nm, in average, deliver a 20 C rate capacity of 40, 58, and 71 mAh g−1, while they exhibit a capacity retention of 79, 89, and 82 % after 250 cycles with 0.5 C rate at room temperature and 33, 77, and 64 % after 200 cycles with 1 C rate at 55 °C, respectively. This difference in capacity retention becomes more significant in LiNi0.5Mn1.5O4/graphite full cells due to the effect of graphite anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tang W, Tian S, Liu LL, Li L, Zhang HP, Yue YB, Bai Y, Wu YP, Zhu K (2011) Electrochem Commun 13:205–208

    Article  CAS  Google Scholar 

  2. Park OK, Cho Y, Lee S, Yoo HC, Song HK, Cho J (2011) Energy Environ Sci 4:1621–1633

    Article  CAS  Google Scholar 

  3. Kraytsberg A, Ein-Eli Y (2012) Adv Energy Mater 2:922–939

    Article  CAS  Google Scholar 

  4. Wang HL, Xia H, Lai MO, Lu L (2009) Electrochem Commun 11:1539–1542

    Article  CAS  Google Scholar 

  5. Li BZ, Xing LD, Xu MQ, Lin HB, Li WS (2013) Electrochem Commun 34:48–51

    Article  Google Scholar 

  6. Fang HS, Li LP, Li GS (2007) J Power Sources 167:223–227

    Article  CAS  Google Scholar 

  7. Kunduraci M, Amatucci GG (2008) Electrochim Acta 53:4193–4199

    Article  CAS  Google Scholar 

  8. Ma LW, Chen BZ, Shi XC, Zhang W, Zhang K (2010) Colloids Surf A 369:88–94

    Article  CAS  Google Scholar 

  9. Yoon T, Park S, Mun J, Ryu JH, Choi W, Kang YS, Park JH, Oh SM (2012) J Power Sources 215:312–316

    Article  CAS  Google Scholar 

  10. Zhou L, Zhao D, Lou X (2012) Angew Chem Int Ed Engl 51:239–241

    Article  CAS  Google Scholar 

  11. Zhang X, Cheng F, Yang J, Chen J (2013) Nano Lett 13:2822–2825

    Article  CAS  Google Scholar 

  12. Lin HB, Zhang YM, Hu JN, Wang YT, Xing LD, Xu MQ, Li XP, Li WS (2014) J Power Sources 257:37–44

    Article  CAS  Google Scholar 

  13. Shaju KM, Bruce PG (2008) Dalton Trans 5471–5475

  14. Zhang X, Cheng F, Zhang K, Liang Y, Yang S, Liang J, Chen J (2012) RSC Adv 2:5669–5675

    Article  CAS  Google Scholar 

  15. Rho YH, Dokko K, Kanamura K (2006) J Power Sources 157:471–476

    Article  CAS  Google Scholar 

  16. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Nano Lett 8:3948–3952

    Article  CAS  Google Scholar 

  17. Ding YL, Goh BM, Zhang H, Loh KP, Lu L (2013) J Power Sources 236:1–9

    Article  CAS  Google Scholar 

  18. Lee HW, Muralidharan P, Mari CM, Ruffo R, Kim DK (2011) J Power Sources 196:10712–10716

    Article  CAS  Google Scholar 

  19. Xiang XD, Fu Z, Li WS (2013) J Solid State Electrochem 17:1201–1206

    Article  CAS  Google Scholar 

  20. Xiao XC, Lu P, Ahn D (2011) Adv Mater 23:3911–3915

    Article  CAS  Google Scholar 

  21. Matsuda K, Taniguchi I (2004) J Power Sources 132:156–160

    Article  CAS  Google Scholar 

  22. Amatucci G, Pasquier AD, Blyr A, Zheng T, Tarascon JM (1999) Electrochim Acta 45:255–271

    Article  CAS  Google Scholar 

  23. Kim HJ, Choi Y, Yoon S, Cho JJ (2007) Electrochem Commun 9:801–806

    Article  Google Scholar 

  24. Wei GZ, Lu X, Ke FS, Huang L, Li JT, Wang ZX, Zhou ZY, Sun SG (2010) Adv Mater 22:4364–4367

    Article  CAS  Google Scholar 

  25. Wang J, Yao XY, Zhou XF, Liu ZP (2011) J Mater Chem 21:2544–2549

    Article  CAS  Google Scholar 

  26. Xiang XD, Li XQ, Li WS (2013) J Power Sources 230:89–95

    Article  CAS  Google Scholar 

  27. Yi TF, Xie Y, Zhu YR, Ye MF (2012) J Power Sources 211:59–65

    Article  CAS  Google Scholar 

  28. Talyosef Y, Markovsky B, Salitra G, Aurbach D, Kim HJ, Choi S (2005) J Power Sources 146:664–669

    Article  CAS  Google Scholar 

  29. Chen D, Li B, Liao Y, Lan H, Lin H, Xing L, Wang Y, Li W (2014) J Solid State Electrochem 18:2027–2033

    Article  CAS  Google Scholar 

  30. Aklalouch M, Amarilla JM, Saadoune I, Rojo JM (2011) J Power Sources 196:10222–10227

    Article  CAS  Google Scholar 

  31. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Ed Engl 47:2930–2946

    Article  CAS  Google Scholar 

  32. Wang Y, Li H, He P, Hosono E, Zhou H (2010) Nanoscale 2:1294–1305

    Article  CAS  Google Scholar 

  33. Li B, Wang YQ, Rong HB, Wang YT, Liu JS, Xing LD, Xu MQ, Li WS (2013) J Mater Chem A 1:12954–12961

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported from the joint project of National Natural Science Foundation of China and Natural Science Foundation of Guangdong Province (Grant No. U1134002), the National Natural Science Foundation (Grant No. 21273084), the Natural Science Fund of Guangdong Province (Grant No. 10351063101000001), the key project of Science and Technology in Guangdong Province (Grant No. 2012A010702003), Joint Project of Guangdong Province and Ministry of Education for the Cooperation among Industries, Universities and Institutes (Grant No. 2012B091100332), and the scientific research project of Department of Education of Guangdong Province (Grant No. 2013CXZDA013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youhao Liao or Weishan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Li, X., Liao, Y. et al. Effect of particle size on rate capability and cyclic stability of LiNi0.5Mn1.5O4 cathode for high-voltage lithium ion battery. J Solid State Electrochem 19, 569–576 (2015). https://doi.org/10.1007/s10008-014-2635-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2635-4

Keywords

Navigation