Skip to main content
Log in

Radical anions of quinoxalines (an in situ electron paramagnetic resonance spectroelectrochemical and theoretical study)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The cathodic reduction of 10-ethyl-7H,10H-pyrido[2,3-f]quinoxalin-7-one (1a) and ethyl 10-ethyl-7-oxo-7H,10H-pyrido[2,3-f]quinoxaline-8-carboxylate (2a), as well as their 2,3-R,R-substituted derivatives (R = CH3 or C6H5), represents a reversible one-electron process coupled with the generation of corresponding radical monoanions as evidenced by in situ electron paramagnetic resonance (EPR)/UV–vis-near-infrared (NIR) cyclovoltammetric experiments in N,N-dimethylformamide. The detected radical monoanions are characterized by electronic absorption bands in the vis-NIR regions, and their EPR spectra show a dominant interaction of the unpaired electron with the nitrogen and hydrogen nuclei of the pyrazine ring. The reduction behavior of 10-ethyl-7-oxo-7H,10H-pyrido[2,3-f]quinoxaline-8-carboxylic acid (3a) and its 2,3-dimethyl or 2,3-diphenyl derivatives is more complex, revealing an irreversible first reduction peak, followed by a second reversible reduction step. Based on the results of the in situ EPR/UV–vis-NIR spectroelectrochemical measurements for quinoxaline carboxylic acids, the first irreversible reduction peak was assigned to a reduction process on the pyridone ring, followed by a second reversible reduction process on the π-electron deficient pyrazine moiety, generating the radical monoanions detected by EPR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chowdhury N, Gangopadhyay M, Karthik S, Pradeep Singh ND, Baidya M, Ghosh SK (2014) J Photochem Photobiol B Biol 130:188–198

    Article  CAS  Google Scholar 

  2. Gil A, Pabón A, Galiano S, Burguete A, Pérez-Silanes S, Deharo E, Monge A, Aldana I (2014) Molecules 19:2166–2180

    Article  Google Scholar 

  3. Patidar AK, Jeyakandan M, Mobiya AK, Selvam G (2011) Int J PharmTechnol Res 3:386–392

    CAS  Google Scholar 

  4. Burguete A, Pontiki E, Hadjipavlou-Litina D, Ancizu S, Villar R, Solano B, Moreno E, Torres E, Pérez S, Aldana I, Monge A (2011) Chem Biol Drug Des 77:255–267

    Article  CAS  Google Scholar 

  5. Bella M, Milata V, Larina LI (2012) J Heterocycl Chem 49:293–296

    Article  CAS  Google Scholar 

  6. Kakehashi A, Wei M, Fukushima S, Wanibuchi H (2013) Cancers 5:1332–1354

    Article  Google Scholar 

  7. Kroon R, Gehlhaar R, Steckler TT, Henriksson P, Müller C, Bergqvist J, Hadipour A, Heremans P, Andersson MR (2012) Sol Energy Mater Sol Cells 105:280–286

    Article  CAS  Google Scholar 

  8. Achelle S, Baudequin C, Plé N (2013) Dyes Pigments 98:575–600

    Article  CAS  Google Scholar 

  9. Li S, Li A, Yu J, Zhong A, Chen S, Tang R, Deng X, Qin J, Li Q, Li Z (2013) Macromol Rapid Commun 34:227–233

    Article  Google Scholar 

  10. Torres E, Moreno-Viguri E, Galiano S, Devarapally G, Crawford PW, Azqueta A, Arbillaga L, Varela J, Birriel E, Di Maio R, Cerecetto H, González M, Aldana I, Monge A, Pérez-Silanes S (2013) Eur J Med Chem 66:324–334

    Article  CAS  Google Scholar 

  11. Moreno E, Pérez-Silanes S, Gouravaram S, MacHaram A, Ancizu S, Torres E, Aldana I, Monge A, Crawford PW (2011) Electrochim Acta 56:3270–3275

    Article  CAS  Google Scholar 

  12. Moreno E, Ancizu S, Pérez-Silanes S, Torres E, Aldana I, Monge A (2010) Eur J Med Chem 45:4418–4426

    Article  CAS  Google Scholar 

  13. Pérez-Silanes S, Devarapally G, Torres E, Moreno-Viguri E, Aldana I, Monge A, Crawford PW (2013) Helv Chim Acta 96:217–227

    Article  Google Scholar 

  14. Ancizu S, Moreno E, Solano B, Villar R, Burguete A, Torres E, Pérez-Silanes S, Aldana I, Monge A (2010) Bioorg Med Chem 18:2713–2719

    Article  CAS  Google Scholar 

  15. Kaur K, Jain M, Reddy RP, Jain R (2010) Eur J Med Chem 45:3245–3264

    Article  CAS  Google Scholar 

  16. Santos F, Abreu P, Castro H, Paixao I, Cirne-Santos C, Giongo V, Barbosa J, Simonetti B, Garrido V, Bou-Habib D, Silva D, Batalha P, Temerozo J, Souza T, Nogueira C, Cunha A, Rodrigues C, Ferreira V, de Souza M (2009) Bioorg Med Chem 17:5476–5481

    Article  CAS  Google Scholar 

  17. Asif M, Siddiqui AA, Husain A (2013) Med Chem Res 22:1029–1042

    Article  CAS  Google Scholar 

  18. Ahmed A, Daneshtalab M (2012) J Pharm Pharm Sci 15:52–72

    CAS  Google Scholar 

  19. Andersson M, MacGowan A (2003) J Antimicrob Chemother 51:1–11

    Article  CAS  Google Scholar 

  20. Abu-Sheaib ES, Zahra JA, El-Abadelah MM, Boese R (2008) Monatsh Chem 139:1061–1066

    Article  CAS  Google Scholar 

  21. Abu-Sheaib ES, Zahra JA, El-Abadelah MM, Voelter W (2008) Z Naturforsch B Chem Sci 63:555–563

    CAS  Google Scholar 

  22. Saloň J, Milata V, Chudík M, Prónayová N, Leško J, Seman M, Belicová A (2004) Monatsh Chem 135:283–291

    Article  Google Scholar 

  23. Saloň J, Milata V, Prónayová N, Leško J (2001) Coll Czech Chem Commun 66:1691–1697

    Article  Google Scholar 

  24. Bella M, Milata V (2014) Tetrahedron 70:4814–4819

    Article  CAS  Google Scholar 

  25. Barbieriková Z, Dvoranová D, Bella M, Milata V, Czímerová A, Brezová V (2014) Molecules 19:12078–12098

    Article  Google Scholar 

  26. Duling DR (1994) J Magn Reson Ser B 104:105–110

    Article  CAS  Google Scholar 

  27. Stoll S, Schweiger A (2006) J Magn Reson 178:42–55

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision A,1. Gaussian Inc, Pittsburgh

  29. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  30. Tomasi J, Mennucci B, Cancès E (1999) J Mol Struct THEOCHEM 464:211–226

    Article  CAS  Google Scholar 

  31. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  32. Dill JD, Pople JA (1975) J Chem Phys 62:2921–2923

    Article  CAS  Google Scholar 

  33. Rassolov V, Ratner M, Pople J, Redfern P, Curtiss L (2001) J Comput Chem 22:976–984

    Article  CAS  Google Scholar 

  34. Barone V (1997) Recent advances in density functional methods, part I. In: Chong DP (ed) World Scientific, Singapore

  35. Furche F, Ahlrichs R (2002) J Chem Phys 117:7433–7447

    Article  CAS  Google Scholar 

  36. Saha DK, Sandbhor U, Shirisha K, Padhye S, Deobagkar D, Anson CE, Powell AK (2004) Bioorg Med Chem Lett 14:3027–3032

    Article  CAS  Google Scholar 

  37. Saha DK, Padhye S, Anson CE, Powell AK (2003) Trans Metal Chem 28:579–584

    Article  CAS  Google Scholar 

  38. Saha DK, Padhye S, Anson CE, Powell AK (2002) Inorg Chem Commun 5:1022–1027

    Article  CAS  Google Scholar 

  39. Tom RT, Suryanarayanan V, Reddy PG, Baskaran S, Pradeep T (2004) Langmuir 20:1909–1914

    Article  CAS  Google Scholar 

  40. Izutsu K (2009) Electrochemistry in nonaqueous solutions. Wiley-VCH Verlag, Weinheim, p 15

    Book  Google Scholar 

  41. Staško A, Lušpai K, Barbieriková Z, Rimarčík J, Vagánek A, Lukeš V, Bella M, Milata V, Zalibera M, Rapta P, Brezová V (2012) J Phys Chem A 116:9919–9927

    Article  Google Scholar 

  42. Lušpai K, Barbieriková Z, Malček M, Bučinský L, Staško A, Bella M, Milata V, Rapta P, Brezová V (2013) Curr Org Chem 17:2427–2439

    Article  Google Scholar 

  43. Tarábek J, Kavan L, Kalbáč M, Rapta P, Zukalová M, Dunsch L (2006) Carbon 44:2147–2154

    Article  Google Scholar 

  44. Izadyar A, Omer KM, Liu Y, Chen S, Xu X, Bard AJ (2008) J Phys Chem C 112:20027–20032

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research and Development Agency of the Slovak Republic (contract nos. APVV-0339-10, APVV-0038-11) and the Scientific Grant Agency of the Slovak Republic (Projects VEGA/1/0289/12, VEGA/1/0829/14, VEGA/1/0735/13 and VEGA/1/0307/14). Philip Grier is gratefully acknowledged for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlasta Brezová.

Additional information

Dedicated to the memory of Professor Lothar Dunsch.

The paper represents the applications of unique techniques developed during a long-time cooperation between our Institute of Physical Chemistry in Bratislava and Department of Electrochemistry and Conducting Polymers of IFW in Dresden headed by Professor Dunsch, coupled with an exchange program which has facilitated numerous students and scientists to improve their skills and develop expertise in the field of spectroelectrochemistry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lušpai, K., Staško, A., Lukeš, V. et al. Radical anions of quinoxalines (an in situ electron paramagnetic resonance spectroelectrochemical and theoretical study). J Solid State Electrochem 19, 113–122 (2015). https://doi.org/10.1007/s10008-014-2625-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2625-6

Keywords

Navigation