Skip to main content
Log in

Theoretical problems in solid electrocapillarity

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The main problem in electrocapillarity of solid electrodes is the lack of clarity in determining the surface stress and basic equations. Within the framework of the Gibbs concept of geometrical dividing surface, the “surface stress” cannot be defined because methods of continuum mechanics can be applied to a physical surface layer (of finite thickness), but not to a mathematical surface. Gibbs never used the concept of surface stress, introducing only “surface tension” for a liquid electrode and “closely related quantity” for a solid electrode. Revisiting the derivation of the Gibbs adsorption equation, we prove its applicability to solid surfaces without the limiting requirement of constant state of strain, which was undeservedly interpreted by Eriksson as a shortcoming of the Gibbs theory caused to look for other approaches to surface stress problem. A critical analysis shows that the attempts (Shuttleworth, Eriksson, Couchman, Gokhstein, Weissmüller, etc.) to create a thermodynamic definition of the surface stress (as well as the formulation of fundamental thermodynamic equations and Maxwell relations operating with surface stresses) contain mathematical defects. It is shown that confusing interpretations of some Gibbs’ concepts encountered in the literature have led to “modifications” of the Lippmann equation based on the critical error in the Gibbs–Duhem relation due to the occurrence of an extensive variable, which is inadmissible. The famous Lippmann equation should not be modified, and it remains a unique electrocapillary relation applicable to liquid and solid electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IUPAC. Compendium of chemical terminology (Last update: 2014-02-24; version: 2.3.3). doi:10.1351/goldbook.E01941]

  2. Trasatti S, Parsons R (1986) Pure Appl Chem 58(3):437

    Article  CAS  Google Scholar 

  3. Linford RG (1978) Chem Rev 78:81

    Article  CAS  Google Scholar 

  4. Gutman EM (1995) J Phys Condens Matter 7:L663

    Article  CAS  Google Scholar 

  5. Gutman EM (2011) Surf Sci 605:644

    Article  CAS  Google Scholar 

  6. Gutman EM (2011) Surf Sci 605:1872

    Article  CAS  Google Scholar 

  7. Gutman EM (2012) Surf Sci 606:772

    Article  CAS  Google Scholar 

  8. Gibbs JW (1961) The scientific papers of J. Willard Gibbs, thermodynamics, vol 1. Dover, New York

    Google Scholar 

  9. Láng GG, Barbero CA (2012) Laser techniques for the study of electrode processes, monographs in electrochemistry. Springer, Berlin Heidelberg

    Book  Google Scholar 

  10. Eriksson JC (1969) Surf Sci 14:221

    Article  CAS  Google Scholar 

  11. Couchman PR, Jesser WA (1973) Surf Sci 34:212

    Article  CAS  Google Scholar 

  12. Couchman PR, Everett DH, Jesser WA (1975) J Colloid Interface Sci 52(2):410

    Article  Google Scholar 

  13. Couchman PR, Davidson CR (1977) J Electroanal Chem 85:407

    Article  CAS  Google Scholar 

  14. Eriksson JC, Rusanov AI (2010) Surf Sci 604:1062

    Article  CAS  Google Scholar 

  15. Eriksson JC, Rusanov AI (2011) Surf Sci 605:646

    Article  CAS  Google Scholar 

  16. Shuttleworth R (1950) Proc Phys Soc 63:44

    Article  Google Scholar 

  17. IUPAC green book quantities, units and symbols in physical chemistry (3rd edn. 2007), page 6 (page 20 of 250 in PDF file)

  18. Hill R (1968) Int J Mech Phys Solids 16:229

    Article  Google Scholar 

  19. Bower AF (2010) Applied Mechanics of Solids. CRC Press, New York, p 820

    Google Scholar 

  20. Hansen NR (1994) Int J Solids Struct 31(3):359

    Article  Google Scholar 

  21. Callen HB (1961) Thermodynamics. Wiley, New York

    Google Scholar 

  22. Li JCM (1978) Metall Trans 9A:1353

    CAS  Google Scholar 

  23. Magnenet V, Rahouadj R, Ganghoffer J-F, Cunat C (2007) Int J Plast 23:87

    Article  CAS  Google Scholar 

  24. Bockris JO’M, Reddy AKN (1973) Modern electrochemistry, vol II. Plenum, New York

    Book  Google Scholar 

  25. Müller P, Saúl A (2004) Surf Sci Rep 54:157

    Article  Google Scholar 

  26. Landau LD, Lifshitz EM (1981) Theory of elasticity. Pergamon, Oxford

    Google Scholar 

  27. Lippmann G (1875) Ann Chim Phys 5:494

    Google Scholar 

  28. Parsons R (1955) Trans Faraday Soc 51:1518

    Article  CAS  Google Scholar 

  29. Li N, Lipkowski J (2000) J Electroanal Chem 491:95

    Article  CAS  Google Scholar 

  30. Craxford SR (1940) Trans Faraday Soc 36:85

    Article  CAS  Google Scholar 

  31. Frumkin AN, Petrii OA, Damaskin BB (1970) J Electroanal Chem 27:81

    Article  CAS  Google Scholar 

  32. Vetter KJ (1967) Electrochemical kinetics. Academic, New York

    Google Scholar 

  33. Grahame DC, Whitney RB (1942) J Am Chem Soc 64:548

    Article  Google Scholar 

  34. Grahame DC (1947) Chem Rev 41:441

    Article  CAS  Google Scholar 

  35. Plieth WJ (1970) J Electroanal Chem 27:466

    Article  Google Scholar 

  36. Gokhstein AY (1976) Poverhnostnoe natyajenie tverdyh tel i adsorbtsiya (Surface tension of solids and adsorption). Nauka, Moscow, in Russian

    Google Scholar 

  37. Gokhstein AY (1975) Russ Chem Rev 44(11):921

    Article  Google Scholar 

  38. Gokhstein AY (2012) J Solid State Electrochem 16:3683

    Article  Google Scholar 

  39. Lipkowski J, Schmickler W, Kolb DM, Parsons R (1998) J Electroanal Chem 452:193

    Article  CAS  Google Scholar 

  40. Damaskin BB, Petrii OA, Batrakov VV (1971) Adsorption of organic compounds on electrodes. Plenum, New York

    Book  Google Scholar 

  41. Gutman EM (2011) Surf Sci 605:1923

    Article  CAS  Google Scholar 

  42. Gutman EM (2012) J Solid State Electrochem 16:2283

    Article  CAS  Google Scholar 

  43. Gutman EM (2014) J Solid State Electrochem 18:2061. doi:10.1007/s10008-014-2433-z

  44. Gokhstein AY (2013) J Solid State Electrochem 17:1743

    Article  Google Scholar 

  45. Fletcher S (2013) J Solid State Electrochem. doi:10.1007/s10008-013-2287-9

    Google Scholar 

  46. Deng O, Smetanin M, Weissmüller J (2014) J Catal 309:351

    Article  CAS  Google Scholar 

  47. Weissmüller J, Kramer D (2005) Langmuir 21:4592

    Article  Google Scholar 

  48. Kramer D, Weissmüller J (2007) Surf Sci 601:3042

    Article  CAS  Google Scholar 

  49. Smetanin M, Deng O, Weissmüller J (2011) Phys Chem Chem Phys 13:17313

    Article  CAS  Google Scholar 

  50. Frumkin AN (1979) Potentials of zero charge. Nauka, Moscow (in Russian)

    Google Scholar 

  51. Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, New Jersey

    Google Scholar 

  52. Guz AN (1998) Int Appl Mech 34(10):965

    Article  Google Scholar 

  53. Donea J, Huerta A, Ponthot Ph and Rodríguez-Ferran A (2004) in: Stein E, Borst R and Hughes T (eds), Encyclopedia of computational mechanics. Vol. 1: Fundamentals, Chapter 14, Wiley

  54. Chung T J (2007) General continuum mechanics. Cambridge University Press

  55. Xiao J (2007) Chen rational mechanics I. Introduction to rational mechanics. Science paper online. Ministry of Education, R.P. China

    Google Scholar 

  56. Frumkin AN, Petrii OA (1975) Electrochim Acta 20:347

    Article  CAS  Google Scholar 

  57. Frumkin AN (1923) Z Phys Chem 103:43

    Google Scholar 

  58. Delahay P (1966) Double layer and electrode kinetics. Wiley

  59. Trimarco C (2009) Acta Mech 204:193

    Article  Google Scholar 

  60. Weissmüller J, Viswanath RN, Kibler LA, Kolb DM (2011) Phys Chem Chem Phys 13:2114

    Article  Google Scholar 

  61. Smetanin M (2010) Mechanics of electrified interfaces in diluted electrolytes. Dissertation, Universitat des Saarlandes, urn:nbn:de:bsz:291-scidok-33803

  62. Ziman JM (1964) Principles of the theory of solids. University Press, Cambridge

    Google Scholar 

  63. Gutman EM (1994) Mechanochemistry of solid surfaces. World scientific, New Jersey

    Book  Google Scholar 

  64. Láng G, Heusler KE (1999) J Electroanal Chem 472:168

    Article  Google Scholar 

  65. Zimmels Y (1997) J Chem Soc Faraday Trans 93(3):393

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Prof. F. Marken for the invitation to present this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel M. Gutman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutman, E.M. Theoretical problems in solid electrocapillarity. J Solid State Electrochem 18, 3217–3237 (2014). https://doi.org/10.1007/s10008-014-2617-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2617-6

Keywords

Navigation