Skip to main content
Log in

Influence of iron concentration and post-annealing temperature on structure and pseudocapacitive characteristics of a MnO2–Fe2O3 nanocomposite

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured MnO2 and MnO2–Fe2O3 nanocomposites (MF x O; x = 0.1, 0.2, and 0.3) have been synthesized through a low-temperature ball milling process followed by calcination and acid treatment. It was shown that both the post-annealing temperature and iron (Fe) concentration have a significant influence on the crystal structure and electrochemical performance of the MnO2 nanomaterial. The MnO2-RT is exclusively γ-MnO2, while the MF x O is a mixture of α-MnO2 and Fe2O3. In 1 M lithium hydroxide (LiOH) electrolyte, the MF x O shows better performance as electrode material for supercapacitors than the MnO2 nanoparticles, indicating the beneficial effect of composite formation on the electrode performance. The specific capacitance of the MnO2 nanoparticles post-annealed at 200 °C (MnO2-200 °C electrode) reaches an optimal value of 133.8 F g−1 at 0.75 A g−1, while the MF0.1O post-annealed at 200 °C (MF0.1O-200 °C electrode) exhibits the highest value of 180.9 F g−1 at 0.75 A g−1. After 500 cycles, the specific capacitances of the MnO2-200 °C and MF0.1O-200 °C electrodes keep 84.3 and 84.7 % of the initial capacity, respectively. The facile synthesis, high specific capacitance, and good cycle stability of such MF x O electrodes enable their potential applications as electrode material in high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors. Kluwer/Plenum, New York

    Book  Google Scholar 

  2. Subramanian V, Zhu HW, Vajtai R, Ajayan PM, Wei BQ (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109:20207–20214

    Article  CAS  Google Scholar 

  3. Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142:2699–2703

    Article  CAS  Google Scholar 

  4. Zhang FB, Zhou YK, Li H (2004) Nanocrystalline NiO as an electrode material for electrochemical capacitor. Mater Chem Phys 83:260–264

    Article  CAS  Google Scholar 

  5. Wang HT, Zhang L, Tan XH, Holt CMB, Zahiri B, Olsen BC, Mitlin D (2011) Supercapacitive properties of hydrothermally synthesized Co3O4 nanostructures. J Phys Chem C 115:17599–17605

    Article  CAS  Google Scholar 

  6. Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144:220–223

    Article  CAS  Google Scholar 

  7. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  8. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417

    Article  CAS  Google Scholar 

  9. Prasad KR, Miura N (2004) Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors. J Power Sources 135:354–360

    Article  CAS  Google Scholar 

  10. Tang N, Tian XK, Yang C, Pi ZB (2009) Facile synthesis of α-MnO2 nanostructures for supercapacitors. Mater Res Bull 44:2062–2067

    Article  CAS  Google Scholar 

  11. Zhang Y, Li GY, Lv Y, Wang LZ, Zhang AQ, Song YH, Huang BL (2011) Electrochemical investigation of MnO2 electrode material for supercapacitors. Int J Hydrogen Energy 36:11760–11766

    Article  CAS  Google Scholar 

  12. Reddy RN, Reddy RG (2003) Sol–gel MnO2 as an electrode material for electrochemical capacitors. J Power Sources 124:330–337

    Article  CAS  Google Scholar 

  13. Dubal DP, Kim WB, Lokhande CD (2012) Galvanostatically deposited Fe: MnO2 electrodes for supercapacitor application. J Phys Chem Solids 73:18–24

    Article  CAS  Google Scholar 

  14. Kim H, Popov BN (2003) Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. J Electrochem Soc 150:D56–D62

    Article  CAS  Google Scholar 

  15. Yu GH, Hu LB, Vosgueritchian M, Wang HL, Xie X, McDonough JR, Cui X, Cui Y, Bao ZN (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911

    Article  CAS  Google Scholar 

  16. Jafta CJ, Nkosi F, le Roux L, Mathe MK, Kebede M, Makgopa K, Song Y, Tong D, Oyama M, Manyala N, Chen SW, Ozoemena KI (2013) Manganese oxide/graphene oxide composites for high-energy aqueous asymmetric electrochemical capacitors. Electrochim Acta 110:228–233

    Article  CAS  Google Scholar 

  17. Lee MT, Chang JK, Hsieh YT, Tsai WT (2008) Annealed Mn-Fe binary oxides for supercapacitor applications. J Power Sources 185:1550–1556

    Article  CAS  Google Scholar 

  18. McKeown DA, Hagans PL, Carette LP, Russell AE, Swider KE, Rolison DR (1999) Structure of hydrous ruthenium oxides: implications for charge storage. J Phys Chem B 103:4825–4832

    Article  CAS  Google Scholar 

  19. Toupin M, Brousse T, Bélanger D (2002) Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14:3946–3952

    Article  CAS  Google Scholar 

  20. Sudhakar YN, Selvakumar M, Bhat DK (2014) Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte. Mater Sci Eng B 180:12–19

    Article  CAS  Google Scholar 

  21. Ma GF, Li JJ, Sun KJ, Peng H, Mu JJ, Lei ZQ (2014) High performance solid-state supercapacitor with PVA-KOH-K3[Fe(CN)6] gel polymer as electrolyte and separator. J Power Sources 256:281–287

    Article  CAS  Google Scholar 

  22. Chang JK, Chen YL, Tsai WT (2004) Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition. J Power Sour 135:344–353

    Article  CAS  Google Scholar 

  23. Chang JK, Tsai WT (2005) Microstructure and pseudocapacitive performance of anodically deposited manganese oxide with various heat-treatments. J Electrochem Soc 152:A2063–A2068

    Article  CAS  Google Scholar 

  24. Devaraj S, Munichandraiah N (2007) Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing. J Electrochem Soc 154:A80–A88

    Article  CAS  Google Scholar 

  25. Lin CK, Chuang KH, Lin CY, Tsay CY, Chen CY (2007) Manganese oxide films prepared by sol–gel process for supercapacitor application. Surf Coat Technol 202:1272–1276

    Article  CAS  Google Scholar 

  26. Zhang F, Yuan CZ, Lu XJ, Zhang LJ, Che Q, Zhang XG (2012) Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors. J Power Sources 203:250–256

    Article  CAS  Google Scholar 

  27. Yuan LY, Lu XH, Xiao X, Zhai T, Dai JJ, Zhang FC, Hu B, Wang X, Gong L, Chen J, Hu CG, Tong YX, Zhou J, Wang ZL (2011) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6:656–661

    Article  Google Scholar 

  28. Hu LJ, Qiu B, Xia Y, Qin ZH, Qin LF, Zhou XF, Liu Z (2014) Solvothermal synthesis of Fe-doping LiMnPO4 nanomaterials for Li-ion batteries. J Power Sources 248:246–252

    Article  CAS  Google Scholar 

  29. Oh SM, Kim IY, Kim SJ, Jung W, Hwang SJ (2013) A phase transformation route to Fe2O3-Mn3O4 nanocomposite with improved electrode performance. Mater Lett 107:221–224

    Article  CAS  Google Scholar 

  30. Zhang YX, Li F, Huang M (2013) One-step hydrothermal synthesis of hierarchical MnO2-coated CuO flower-like nanostructures with enhanced electrochemical properties for supercapacitor. Mater Lett 112:203–206

    Article  CAS  Google Scholar 

  31. Subramanian V, Zhu HW, Wei BQ (2006) Nanostructured MnO2: hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. J Power Sour 159:361–364

    Article  CAS  Google Scholar 

  32. Xu MW, Kong LB, Zhou WJ, Li HL (2007) Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141–19147

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study is primarily supported by Shanghai Pujiang Program under Grant No. 11PJ1403400. The authors thank the support from the Instrumental Analysis and Research Center of Shanghai University and GE (China) Research and Development Center Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Zheng, S., Lu, Y. et al. Influence of iron concentration and post-annealing temperature on structure and pseudocapacitive characteristics of a MnO2–Fe2O3 nanocomposite. J Solid State Electrochem 19, 381–390 (2015). https://doi.org/10.1007/s10008-014-2609-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2609-6

Keywords

Navigation