Skip to main content
Log in

P3HT:PCBM/nickel-aluminum layered double hydroxide-graphene foam composites for supercapacitor electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, a simple dip-coating technique is used to deposit a poly (3-hexylthiophene) and [6, 6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM)/nickel–aluminum-layered double hydroxide-graphene foam (NiAl-LDH-GF) composite onto a nickel foam (NF) serving as a current collector. A self-organization of the polymer chains is assumed on the Ni-foam grid network during the slow “dark” drying process in normal air. Electrochemical cyclic voltammetry (CV) and constant charge–discharge (CD) measurements show an improvement in the supercapacitive behavior of the pristine P3HT:PCBM by an order of magnitude from 0.29 F cm−2 (P3HT:PCBM nanostructures) to 1.22 F cm−2 (P3HT:PCBM/NiAl-LDH-GF composite structure) resulting from the addition of NiAl-LDH-GF material at a current density of 2 mA cm−2. This capacitance retention after cycling at 10 mA cm−2 also demonstrates the electrode material’s potential for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Conway B (1991) Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 138:1539–1548

    Article  CAS  Google Scholar 

  2. Tao Y, Ruiyi L, Zaijun L, Junkang L, Guangli W, Zhiquo G (2013) A free template strategy for the fabrication of nickel/cobalt double hydroxide microspheres with tunable nanostructure and morphology for high performance supercapacitors. RSC Adv 3:19416

    Article  CAS  Google Scholar 

  3. Song Y, Wang J, Li Z, Guan D, Mann T, Liu Q, Zhang M, Liu L (2012) Self-assembled hierarchical porous layered double hydroxides by solvothermal method and their application for capacitors. Microporous Mesoporous Mater 148:159–165

    Article  CAS  Google Scholar 

  4. Yang W, Gao Z, Wang J, Ma J, Zhang M, Liu L (2013) Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl Mater Interfaces 5:5443–5454

    Article  CAS  Google Scholar 

  5. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  6. Notten PHL, Roozeboom F, Niessen RAH, Baggetto L (2007) 3D integrated all solid state rechargeable batteries. Adv Mater 19:4564–4567

    Article  CAS  Google Scholar 

  7. Ruzmetov D, Oleshko VP, Haney PM, Lezec HJ, Karki K, Baloch KH, Agrawal AK, Davydov AV, Krylyuk S, Liu Y (2011) Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. Nano Lett 12:505–511

    Article  Google Scholar 

  8. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251

    Article  CAS  Google Scholar 

  9. Tao Y, Haiyan Z, Ruiyi L, Zaijun L, Junkang L, Guangli W, Zhiquo G (2013) Microwave synthesis of nickel/cobalt double hydroxide ultrathin flowerclusters with three-dimensional structures for high-performance supercapacitors. Electrochim Acta 111:71–79

    Article  CAS  Google Scholar 

  10. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138

    Article  CAS  Google Scholar 

  11. Neto AHC, Castro Neto AH, Peres NMR, Neto AHC, Castro NAH, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  Google Scholar 

  12. Shen J, Yang C, Li X, Wang G (2013) High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Appl Mater Interfaces 5:8467–8476

    Article  CAS  Google Scholar 

  13. Bello A, Fashedemi OO, Fabiane M, Lekitima JN, Ozoemena KI, Manyala N (2013) Microwave assisted synthesis of MnO2 on nickel foam-graphene for electrochemical capacitor. Electrochim Acta 114:48–53

    Article  CAS  Google Scholar 

  14. Bello A, Makgopa K, Fabiane M, Dodoo-Ahrin D, Ozoemena KI, Manyala N (2013) Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J Mater Sci 40:6707–6712

    Article  Google Scholar 

  15. Khamlich S, Bello A, Fabiane M, Ngom BD, Manyala N (2013) Hydrothermal synthesis of simonkolleite microplatelets on nickel foam-graphene for electrochemical supercapacitors. J Solid State Electrochem 17:2879–2886

    Article  CAS  Google Scholar 

  16. Bello A, Fashedemi OO, Lekitima JN, Mopeli F, Dodoo-Arhin D, Ozoemena KI, Gogotsi Y, Charlie Johnson AT, Manyala N (2013) High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide. AIP Adv 3:082118

    Article  Google Scholar 

  17. Gupta A, Akhtar AJ, Saha SK (2013) In-situ growth of P3HT/graphene composites for supercapacitor application. Mater Chem Phys 140:616–621

    Article  CAS  Google Scholar 

  18. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970

    Article  CAS  Google Scholar 

  19. Lai L, Yang H, Wang L, Teh BK, Zhong J, Chou H, Chen L, Chen W, Shen Z, Ruoff RS, Lin J (2012) Preparation of supercapacitor electrodes through selection of graphene surface functionalities. ACS Nano 6:5941–5951

    Article  CAS  Google Scholar 

  20. Stoller M, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  21. Zhang W, Ma C, Fang J, Cheng J, Zhang X, Dong S, Zhang L (2013) Asymmetric electrochemical capacitors with high energy and power density based on graphene/CoAl-LDH and activated carbon electrodes. RSC Adv 3:2483–2490

    Article  CAS  Google Scholar 

  22. Wang YZ, Wang Q, Xie HY, Xie HY, Ho LP, Tan DMF, Diao YY, Chen W, Xie XN (2012) Fabrication of highly ordered P3HT:PCBM nanostructures and its application as a supercapacitive electrode. Nanoscale 4:3725–3728

    Article  CAS  Google Scholar 

  23. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21:1323–1338

    Article  CAS  Google Scholar 

  24. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873

    Article  CAS  Google Scholar 

  25. Tan MJ, Zhong S, Li J, Chen Z, Chen W (2013) Air-stable efficient inverted polymer solar cells using solution-processed nanocrystalline ZnO interfacial layer. ACS Appl Mater Interfaces 5:4696–4701

    Article  CAS  Google Scholar 

  26. Zhang Z, Chen X, Chen P, Guan G, Qiu L, Lin H, Yang Z, Bai W, Luo Y, Peng H (2014) Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv Mater 26:466–470

    Article  CAS  Google Scholar 

  27. Wang J, Zhou J, Li Z, Liu Q, Yang P, Jing X, Zhang M (2010) Design of magnetic and fluorescent Mg–Al layered double hydroxides by introducing Fe3O4 nanoparticles and Eu3+ ions for intercalation of glycine. Mater Res Bull 45:640–645

    Article  CAS  Google Scholar 

  28. Wang J, Song Y, Li Z, Liu Q, Zhou J, Jing X, Zhang M, Jiang Z (2010) In situ Ni/Al layered double hydroxide and its electrochemical capacitance performance. Energy Fuel 24:6463–6467

    Article  CAS  Google Scholar 

  29. Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112:4124–4155

    Article  CAS  Google Scholar 

  30. Rivaton A, Chambon S, Manceau M (2010) Light-induced degradation of the active layer of polymer-based solar cells. Polym Degrad Stab 95:278–284

    Article  CAS  Google Scholar 

  31. Ferrari A, Basko D (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246

    Article  CAS  Google Scholar 

  32. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095

    Article  CAS  Google Scholar 

  33. Gao Z, Wang J, Li Z, Yang W, Wang B (2011) Graphene nanosheet/Ni2+/Al3+ layered double-hydroxide composite as a novel electrode for a supercapacitor. Chem Mater 23:3509–3516

    Article  CAS  Google Scholar 

  34. Tsoi WC, James DT, Kim JS, Nicholson PG, Murphy CE, Bradley DDC, Nelson J, Kim JS (2011) The nature of in-plane skeleton Raman modes of P3HT and their correlation to the degree of molecular order in P3HT:PCBM blend thin films. J Am Chem Soc 133:9834–9843

    Article  CAS  Google Scholar 

  35. Saini V, Li Z, Bourdo S, Dervishi E, Xu Y, Ma X, Kunets VP, Salamo GJ, Viswanathan T, Biris AR, Saini D, Biris AS (2009) Electrical, optical, and morphological properties of P3HT-MWNT nanocomposites prepared by in situ polymerization. J Phys Chem C 113:8023–8029

    Article  CAS  Google Scholar 

  36. Falke S, Eravuchira P, Materny A, Lienau C (2011) Raman spectroscopic identification of fullerene inclusions in polymer/fullerene blends. J Raman Spectrosc 42:1897–1900

    Article  CAS  Google Scholar 

  37. Kuzmany H, Matus M, Burger B, Winter J (1994) Raman scattering in C60 fullerenes and fullerides. Adv Mater 6:731–745

    Article  CAS  Google Scholar 

  38. Yu J, Yu JC, Ho W, Leung MKP, Cheng B, Zhang G, Zhao X (2003) Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania. Appl Catal A Gen 255:309–320

    Article  CAS  Google Scholar 

  39. Lao ZJ, Konstantinov K, Tournaire Y, Ng SH, Wang GX, Liu HK (2006) Synthesis of vanadium pentoxide powders with enhanced surface-area for electrochemical capacitors. J Power Sources 162:1451–1454

    Article  CAS  Google Scholar 

  40. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is based on research supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Technology (DST) and the National Research Foundation (NRF).

Conflict of interest

Any opinion, findings, and conclusions or recommendations expressed in this work are those of the authors, and therefore, the NRF and DST do not accept any liability with regard thereto. D.M acknowledges the financial support from the NRF Innovation Doctoral Fund and the University of Pretoria PhD bursary scheme for his study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ncholu Manyala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momodu, D., Bello, A., Dangbegnon, J. et al. P3HT:PCBM/nickel-aluminum layered double hydroxide-graphene foam composites for supercapacitor electrodes. J Solid State Electrochem 19, 445–452 (2015). https://doi.org/10.1007/s10008-014-2602-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2602-0

Keywords

Navigation