Skip to main content
Log in

Pre-stabilized reduced graphene oxide by ammonia as carrier for Ni(OH)2 with excellent electrochemical property

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An advanced electrochemical pseudocapacitor material based on reduced graphene oxide and nickel hydroxide (rGO&Ni(OH)2) was prepared by an easy process where ammonia acted as a pre-stabilizer that could be easily removed. The results showed that the agglomeration and re-stacking of rGO could be effectively prevented, resulting in few-layer rGO nanosheet with high specific surface area of 891.22 m2/g which could supply large available area for loading nanoparticle. After the incorporation of Ni(OH)2 nanoparticle, the rGO&Ni(OH)2 composite owned excellent electrochemical performance thanks to effective prevention of agglomeration and re-stacking of rGO with large size of the sp2 domain, no residual of pre-stabilizer of ammonia, and tight contact between rGO and Ni(OH)2. Specifically, the rGO&Ni(OH)2 electrode exhibited excellent stability at scan rates from 100 to 300 mV/s. A high specific capacitance of 1,008 F/g was obtained at high current density of 42 A/g in 6 mol/L KOH aqueous electrolyte, and the specific capacitance demonstrated good rate capability. Moreover, rGO&Ni(OH)2 electrode showed a long cycle life, retaining 74 % specific capacitance after 2,000 cycles at current density of 6 A/g. The advantages of easy process and excellent electrochemical property suggested great potential application of rGO&Ni(OH)2 in supercapacitors.

An advanced electrochemical pseudocapacitor material based on reduced graphene oxide and nickel hydroxide was prepared by an easy process where ammonia acted as a pre-stabilizer that could be easily removed. The obtained material owned excellent electrochemical property, including high capacitance, good rate capability, excellent stability, long cycle life, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Wang HL, Casalongue HS, Liang YY, Dai HJ (2010) J Am Chem Soc 132:7472–7477

    Article  CAS  Google Scholar 

  3. Chen Z, Qin YC, Weng D, Xiao QF, Peng YT, Wang XL, Li HX, Wei F, Lu YF (2009) Adv Funct Mater 19:3420–3426

    Article  CAS  Google Scholar 

  4. Fan ZJ, Yan J, Wei T, Zhi LJ, Ning GQ, Li TY, Wei F (2011) Adv Funct Mater 21:2366–2375

    Article  CAS  Google Scholar 

  5. Bao LH, Zang JF, Li XD (2011) Nano Lett 11:1215–1220

    Article  CAS  Google Scholar 

  6. Chen Z, Augustyn V, Wen J, Zhang YW, Shen MQ, Dunn B, Lu YF (2011) Adv Mater 23:791–795

    Article  CAS  Google Scholar 

  7. Ghosh A, Lee YH (2012) ChemSusChem 5:480–499

    Article  CAS  Google Scholar 

  8. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  9. Liu C, Li F, Ma LP, Cheng HM (2010) Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  10. Jiang H, Yang LP, Li CZ, Yan CY, Lee PS, Ma J (2011) Energy Environ Sci 4:1813–1819

    Article  CAS  Google Scholar 

  11. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publisher, New York

    Book  Google Scholar 

  12. Yang PH, Xiao X, Li YZ, Ding Y, Qiang PF, Tan XH, Mai WJ, Lin ZY, Wu WZ, Li TQ, Jin HY, Liu PY, Zhou J, Wong CP, Wang ZL (2013) ACS Nano 7:2617–2626

    Article  CAS  Google Scholar 

  13. Epifani M, Chavez-Capilla T, Andreu T, Arbiol J, Palma J, Morante JR, Diaz R (2012) Energy Environ Sci 5:7555–7558

    Article  CAS  Google Scholar 

  14. Jiang J, Li YY, Liu JP, Huang XT, Yuan CZ, Lou XW (2012) Adv Mater 24:5166–5180

    Article  CAS  Google Scholar 

  15. Jiang H, Ma J, Li CZ (2012) Adv Mater 24:4197–4202

    Article  CAS  Google Scholar 

  16. Lu XH, Yu MH, Zhai T, Wang GM, Xie SL, Liu TY, Liang CL, Tong YX, Li Y (2013) Nano Lett 13:2628–2633

    Article  CAS  Google Scholar 

  17. Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011) Nat Commun 2. doi:10.1038/ncomms1387

  18. Dai SG, Xi Y, Hu CG, Liu JL, Zhang KY, Yue XL, Cheng L (2013) J Mater Chem A 1:15530–15534

    Article  CAS  Google Scholar 

  19. Frackowiak E (2007) Phys Chem Chem Phys 9:1774–1785

    Article  CAS  Google Scholar 

  20. Zhai YP, Dou YQ, Zhao DY, Fulvio PF, Mayes RT, Dai S (2011) Adv Mater 23:4828–4850

    Article  CAS  Google Scholar 

  21. Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  22. Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Science 332:1537–1541

    Article  CAS  Google Scholar 

  23. Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690–2695

    Article  CAS  Google Scholar 

  24. Kung CW, Chen HW, Lin CY, Vittal R, Ho KC (2012) J Power Sources 214:91–99

    Article  CAS  Google Scholar 

  25. Wang B, Chen JS, Wang ZY, Madhavi S, Lou XW (2012) Adv Energy Mater 2:1188–1192

    Article  Google Scholar 

  26. Xie KY, Li J, Lai YQ, Lu W, Zhang ZA, Liu YX, Zhou LM, Huang HT (2011) Electrochem Commun 13:657–660

    Article  CAS  Google Scholar 

  27. Lu XH, Zheng DZ, Zhai T, Liu ZQ, Huang YY, Xie SL, Tong YX (2011) Energy Environ Sci 4:2915–2921

    Article  CAS  Google Scholar 

  28. Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW (2013) Nat Commun 4. doi:10.1038/ncomms2932

  29. Jiang H, Lee PS, Li CZ (2013) Energy Environ Sci 6:41–53

    Article  CAS  Google Scholar 

  30. Candelaria SL, Shao YY, Zhou W, Li XL, Xiao J, Zhang JG, Wang Y, Liu J, Li JH, Cao GZ (2012) Nano Energy 1:195–220

    Article  CAS  Google Scholar 

  31. Wu Q, Xu YX, Yao ZY, Liu AR, Shi GQ (2010) ACS Nano 4:1963–1970

    Article  CAS  Google Scholar 

  32. Xu JJ, Wang K, Zu SZ, Han BH, Wei ZX (2010) ACS Nano 4:5019–5026

    Article  CAS  Google Scholar 

  33. Qu QT, Yang SB, Feng XL (2011) Adv Mater 23:5574–5580

    Article  CAS  Google Scholar 

  34. Yu GH, Hu LB, Vosgueritchian M, Wang HL, Xie X, McDonough JR, Cui X, Cui Y, Bao ZN (2011) Nano Lett 11:2905–2911

    Article  CAS  Google Scholar 

  35. Yan J, Wei T, Shao B, Fan ZJ, Qian WZ, Zhang ML, Wei F (2010) Carbon 48:487–493

    Article  CAS  Google Scholar 

  36. Yan J, Wei T, Fan ZJ, Qian WZ, Zhang ML, Shen XD, Wei F (2010) J Power Sources 195:3041–3045

    Article  CAS  Google Scholar 

  37. Ji JY, Zhang LL, Ji HX, Li Y, Zhao X, Bai X, Fan XB, Zhang FB, Ruoff RS (2013) ACS Nano 7:6237–6243

    Article  CAS  Google Scholar 

  38. Shahid M, Liu JL, Shakir I, Warsi MF, Nadeem M, Kwon YU (2012) Electrochim Acta 85:243–247

    Article  CAS  Google Scholar 

  39. Chen G, Liaw SS, Li BS, Xu Y, Dunwell M, Deng SG, Fan HY, Luo HM (2014) J Power Sources 251:338–343

    Article  CAS  Google Scholar 

  40. Liu JP, Jiang J, Cheng CW, Li HX, Zhang JX, Gong H, Fan HJ (2011) Adv Mater 23:2076–2081

    Article  CAS  Google Scholar 

  41. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1341

    Article  CAS  Google Scholar 

  42. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  43. Li BJ, Cao HQ, Shao J, Zheng H, Lu YX, Yin JF, Qu MZ (2011) Chem Commun 47:3159–3161

    Article  CAS  Google Scholar 

  44. Jeong HK, Lee YP, Lahaye RJWE, Park MH, An KH, Kim IJ, Yang CW, Park CY, Ruoff RS, Lee YH (2008) J Am Chem Soc 130:1362–1366

    Article  CAS  Google Scholar 

  45. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) ACS Nano 3:2653–2659

    Article  CAS  Google Scholar 

  46. Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

  47. Chang J, Xu H, Sun J, Gao L (2012) J Mater Chem 22:11146–11150

    Article  CAS  Google Scholar 

  48. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Carbon 46:833–840

    Article  CAS  Google Scholar 

  49. Park S, An JH, Jung IW, Piner RD, An SJ, Li XS, Velamakanni A (2009) Nano Lett 9:1593–1597

    Article  CAS  Google Scholar 

  50. Lee JW, Ahn T, Soundararajan D, Ko JM, Kim JD (2011) Chem Commun 47:6305–6307

    Article  CAS  Google Scholar 

  51. Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F (2012) Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  52. Sun ZP, Lu XM (2012) Ind Eng Chem Res 51:9973–9979

    Article  CAS  Google Scholar 

  53. Yan J, Sun W, Wei T, Zhang Q, Fan Z, Wei F (2012) J Mater Chem 22:11494–11502

    Article  CAS  Google Scholar 

  54. Liu JP, Cheng CW, Zhou WW, Li HX, Fan HJ (2011) Chem Commun 47:3436–3438

    Article  CAS  Google Scholar 

  55. Chen S, Zhu JW, Zhou H, Wang X (2011) RSC Adv 1:484–489

    Article  CAS  Google Scholar 

  56. Liu CG, Lee YS, Kim YJ, Song IC, Kim JH (2009) Synth Met 159:2009–2012

    Article  CAS  Google Scholar 

  57. Hu GX, Li CX, Gong H (2010) J Power Sources 195:6977–6981

    Article  CAS  Google Scholar 

  58. Liang ZW, Cui H, Wang K, Yang PH, Zhang L, Mai WJ, Wang CX, Liu PY (2012) CrystEngComm 14:1723–1728

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the National Natural Science Foundation of China (21271087, 51172099, 21006038, 21376104, and 51102115), the Natural Science key Foundation of Guangdong Province of China (10251007002000000), the Foundation of Science and Technology Projects of Guangdong Province (11A24060559, 2011B090300018), the Fundamental Research Funds for the Central Universities (21612109), and the Research and innovation project of Jinan University for Excellent Master (201321).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Z. Tan or X. Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J.L., Liu, H.D., Huang, L.H. et al. Pre-stabilized reduced graphene oxide by ammonia as carrier for Ni(OH)2 with excellent electrochemical property. J Solid State Electrochem 19, 229–239 (2015). https://doi.org/10.1007/s10008-014-2595-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2595-8

Keywords

Navigation