Skip to main content
Log in

One-pot chemical blasting synthesis of the bamboo-like multiwalled carbon nanotubes/graphene oxide nanocomposite and its application in electrochemical detection of dopamine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotube (MWCNT)/graphene oxide (GO) nanocomposite fabricated by a novel one-pot chemical blasting method was used for electrochemical detection of dopamine (DA). Characterization data reveal that MWCNT/GO nanocomposite possesses well-developed three-dimensional bamboo-like structure and large specific surface area as well as good electrical conductivity. Electrochemical analysis suggests that the nanocomposite displays superior electrocatalytic activity towards the oxidation of DA, and the peak currents present a good linear relationship to the concentrations ranging from 0.5 to 400.0 μM with a detection limit of 60 nM (S/N = 3). The prepared electrochemical sensor was applied to determine DA in pharmaceutical dopamine hydrochloride injection with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li YY, Do J, Yang JD, Liu D, Lu XQ (2012) Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid using single-walled carbon nanotubes modified electrode. Colloids Surf B 92:32–36

    Article  Google Scholar 

  2. Curtius HC, Wolfensberger M, Steinmann B, Redweik U (1974) Mass fragmentography of dopamine and 6-hydroxydopamine: application to the determination of dopamine in human brain biopsies from the caudate nucleus. J Chromatogr 99:529–540

    Article  CAS  Google Scholar 

  3. Uutela P, Reinila R, Harju K, Piepponen P, Ketola PA, Kostiainen R (2009) Analysis of intact glucuronides and sulfates of serotonin, dopamine, and their phase I metabolites in rat brain microdialysates by liquid chromatography-tandem mass spectrometry. Anal Chem 81:8417–8425

    Article  CAS  Google Scholar 

  4. Wang HY, Sun Y, Tang B (2002) Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. Talanta 57:899–907

    Article  CAS  Google Scholar 

  5. Souza Ribeiro FA, Tarley CRT, Borges KB, Pereira AC (2013) Development of a square wave voltammetric method for dopamine determination using a biosensor based on multiwall carbon nanotubes paste and crude extract of Cucurbita pepo L. Sensors Actuators B 185:743–754

    Article  Google Scholar 

  6. Yang SL, Li G, Yang R, Xia MM, Qu LB (2011) Simultaneous voltammetric detection of dopamine and uric acid in the presence of high concentration of ascorbic acid using multi-walled carbon nanotubes with methylene blue composite film-modified electrode. J Solid State Electrochem 15:1909–1918

    Article  CAS  Google Scholar 

  7. Ling YY, Huang QA, Zhu MS, Feng DX, Li XZ, Wei Y (2013) A facile one-step electrochemical fabrication of reduced graphene oxide-mutilwall carbon nanotubes-phospotungstic acid composite for dopamine sensing. J Electroanal Chem 693:9–15

    Article  CAS  Google Scholar 

  8. Gao F, Cai XL, Wang X, Gao C, Liu SL, Gao F, Wang QX (2013) Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors Actuators B 186:380–387

    Article  CAS  Google Scholar 

  9. Chen JH, Zhang J, Lin XH, Wan HY, Zhang SB (2007) Electrocatalytic oxidation and determination of dopamine in the presence of ascorbic acid and uric acid at a poly (4-(2-pyridylazo)-resorcinol) modified glass carbon electrode. Electroanalysis 19:612–615

    Article  CAS  Google Scholar 

  10. Clszewski A, Milczarek G (1999) Polyeugenol-modified platinum electrode for selective detection of dopamine in the presence of ascorbic acid. Anal Chem 71:1055–1061

    Article  Google Scholar 

  11. Lin M, Huang HL, Liu YJ, Liang CJ, Fei SD, Chen XF, Ni CL (2013) High loading of uniformly dispersed Pt nanoparticles on polydopamine coated carbon nanotubes and its application in simultaneous determination of dopamine and uric acid. Nanotechnology 24:1–9

    Google Scholar 

  12. Sun W, Wang XZ, Wang YH, Ju XM, Xu L, Li GJ, Sun ZF (2013) Application of graphene-SnO2 nanocomposite modified electrode for the sensitive electrochemical detection of dopamine. Electrochim Acta 87:317–322

    Article  CAS  Google Scholar 

  13. Şen M, Tamer U, Pekmez NÖ (2012) Carbon nanotubes/alizarin red S-poly(vinylferrocene) modified glassy carbon electrode for selective determination of dopamine in the presence of ascorbic acid. J Solid State Electrochem 16:457–463

    Article  Google Scholar 

  14. Beitollahi H, Raoof JB, Hosseinzadeh R (2011) Application of a carbon-paste electrode modified with 2,7-bis(ferrocenyl ethyl)fluoren-9-one and carbon nanotubes for voltammetric determination of levodopa in the presence of uric acid and folic acid. Electroanalysis 23:1934–1940

    Article  CAS  Google Scholar 

  15. Dong XC, Ma YW, Zhu GY, Huang YX, Wang J, Chan-Park MB, Wang LH, Huang W, Chen P (2012) Synthesis of graphene-carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. J Mater Chem 22:17044–17048

    Article  CAS  Google Scholar 

  16. Zhang L, Shi ZG, Lang QH (2011) Fabrication of poly(orthanilic acid)-multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid. J Solid State Electrochem 15:801–809

    Article  CAS  Google Scholar 

  17. Jha N, Imran Jafri R, Rajalakshmi N, Ramaprabhu S (2011) Graphene-multi walled carbon nanotube hybrid electrocatalyst support material for direct methanol fuel cell. Int J Hydrogen Energy 36:7284–7290

    Article  CAS  Google Scholar 

  18. Mallesha M, Manjunatha R, Suresh GS, Melo JS, Souza SFD, Venkatesha TV (2012) Direct electrochemical non-enzymatic assay of glucose using functionalized graphene. J Solid State Electrochem 16:2675–2681

    Article  CAS  Google Scholar 

  19. Zhang C, Huang S, Tjiu WW, Fan W, Liu TX (2012) Facile preparation of water-dispersible graphene sheets stabilized by acid-treated multi-walled carbon nanotubes and their poly(vinyl alcohol) composites. J Mater Chem 22:2427–2434

    Article  CAS  Google Scholar 

  20. Lu DB, Zhang Y, Lin SX, Wang LT, Wang CM (2013) Synthesis of PtAu bimetallic nanoparticles on graphene-carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor. Talanta 112:111–116

    Article  CAS  Google Scholar 

  21. Cheemalpati S, Palanisamy S, Chen SM (2013) Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode. Talanta 117:297–304

    Article  Google Scholar 

  22. Woo S, Kim TR, Chung TD, Piao YZ, Kim H (2012) Synthesis of a graphene-carbon nanotube composite and its electrochemical sensing of hydrogen peroxide. Electrochim Acta 59:509–514

    Article  CAS  Google Scholar 

  23. Sun CL, Chang CT, Lee HH, Zhou JG, Wang J, Sham TK, Pong WF (2011) microwave-assisted synthesis of a core–shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid. ACS Nano 5:7788–7795

    Article  CAS  Google Scholar 

  24. Hummers WS, Offeman RE (1957) Preparation of graphitic oxide. J Am Chem Soc 25:1339

    Google Scholar 

  25. Ciolkowski EL, Cooper BR, Jankowski JA, Jorgenson JW, Wightman RM (1992) Direct observation of epinephrine and norepinephrine cosecretion from individual adrenal medullary chromaffin cells. J Am Chem Soc 114:2815–2821

    Article  CAS  Google Scholar 

  26. Amatore C, Gareil M, Savéant JM (1983) Homogeneous vs. heterogeneous electron transfer in electrochemical reactions. J Electroanal Chem 147:1–38

    Article  CAS  Google Scholar 

  27. Amatore C, Savéant JM (1978) Do ECE mechanisms occur in conditions where they could be characterized by electrochemical kinetic techniques. J Electroanal Chem 86:227–232

    Article  CAS  Google Scholar 

  28. Clolkowskl EL, Maness KM, Cahll PS, Wightman RW (1994) Disproportionation during electrooxidation of catecholamines at carbon-fiber microelectrodes. Anal Chem 66:3611–3617

    Article  Google Scholar 

  29. Aghayizadeh MM, Nasirizadeh N, Bidoki SM, Yazdanshenas ME (2013) Electrochemical behavior of a thio-quinazoline derivative electrodeposited on a glassy carbon electrode modified with multi-wall carbon nanotubes: application for simultaneous determination of hydroxylamine and nitrite. Int J Electrochem Sci 8:8848–8862

    CAS  Google Scholar 

  30. Yang HY, Li YC, Ho SSH, Tian XM, Xia YX, Shen YO, Zhao MJ, Pan GT (2013) Preparation and characterization of EDTAD-modified magnetic-Fe3O4 chitosan composite: application of comparative adsorption of dye wastewater with magnetic chitosan. Water Sci Technol 68:209–216

    Article  CAS  Google Scholar 

  31. Keeley GP, McEvoy N, Nolan H, Kumar S, Rezvani E, Holzinger M, Cosnier S, Duesberg GS (2012) Simultaneous electrochemical determination of dopamine and paracetamol based on thin pyrolytic carbon films. Anal Methods 4:2048–2053

    Article  CAS  Google Scholar 

  32. Fan Y, Lu HT, Liu JH, Yang CP, Jing QS, Zhang YX, Yang XK, Huang KJ (2011) Hydrothermal preparation and electrochemical sensing properties of TiO2-graphene nanocomposite. Colloids Surf B 83:78–82

    Article  CAS  Google Scholar 

  33. Tsai YC, Chiu CC (2007) Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds. Sensors Actuators B 125:10–16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Basic Research Program of the Science and Technology Department of Sichuan Province, People’s Republic of China (grant No. 2011ZR0067). Sincere thanks goes to Steven Sai Hang Ho for providing language assistance and to anonymous reviewers for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maojun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Li, Y., Liu, Y. et al. One-pot chemical blasting synthesis of the bamboo-like multiwalled carbon nanotubes/graphene oxide nanocomposite and its application in electrochemical detection of dopamine. J Solid State Electrochem 19, 145–152 (2015). https://doi.org/10.1007/s10008-014-2589-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2589-6

Keywords

Navigation