Skip to main content

Optimization of the photoactivity of conducting polymer covered ZnO nanorod composite electrodes

Abstract

A simple, reproducible, one-step electrochemical synthesis of vertically aligned ZnO nanorod electrode has been worked out. The gradual decrease in the photoelectrochemical performance of the hexagonal ZnO nanorod electrode indicated rapid photodegradation. In order to prevent the n-type semiconductor from photocorrosion, different conducting polymers were deposited on it. Composition and morphology of the hybrids were controlled by carefully changing the electropolymerization parameter (e.g., deposition charge) for the various N or S containing heterocycles. Electrochemical measurements proved that the redox activity of these covering polymer layers was preserved in the hybrid configuration. Photoelectrochemical activity of the polymer-covered ZnO nanorods was masked by thicker layers. Thin films however, successfully inhibited the photocorrosion of ZnO while preserving their photoactivity. Effective protection was evidenced using poly(3,4-ethylenedioxypyrrole) (PEDOP) in comparison with polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Xu T, Qiao Q (2011) Conjugated polymer—inorganic semiconductor hybrid solar cells. Energy Environ Sci 4:2700

    CAS  Article  Google Scholar 

  2. Zhang W, Cheng Y, Yin X, Liu B (2011) Solid-state dye-sensitized solar sells with conjugated polymers as hole-transporting materials. Macromol Chem Phys 212:15–23

    CAS  Article  Google Scholar 

  3. Bi D, Yang L, Boschloo G, Hagfeldt A, Johansson EMJ (2013) Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J Phys Chem Lett 4:1532–1536

    CAS  Article  Google Scholar 

  4. Shin CM, Jeong YI et al (2012) Structural and optical properties of hydrothermally grown zinc oxide nanorods on polyethersulfonate substrates as a function of the growth temperature and duration. Thin Solid Films 520:2449–2454

    CAS  Article  Google Scholar 

  5. Döbbelin M, Tena-Zaera R, Carrasco PM, Sarasua J-R, Cabañero G, Mecerreyes D (2010) Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) nanotube arrays using ZnO templates. J Polym Sci A Polym Chem 48:4648–4653

    Article  Google Scholar 

  6. Schlettwein D, Oekermann T, Yoshida T, Tochimoto M, Minoura H (2000) Photoelectrochemical sensitisation of ZnO-tetrasulfophthalocyaninatozinc composites prepared by electrochemical self-assembly. J Electroanal Chem 481:42–51

    CAS  Article  Google Scholar 

  7. Choi KS et al (2002) Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid–liquid interfaces. J Am Chem Soc 124:12402–12403

    CAS  Article  Google Scholar 

  8. Oekermann T, Yoshida T, Tada H, Minoura H (2006) Color-sensitive photoconductivity of nanostructured ZnO/dye hybrid films prepared by one-step electrodeposition. Thin Solid Films 511:354–357

    Article  Google Scholar 

  9. Wang ZL (2004) Nanostructures of ZnO. Mater Today 7:26–33

    CAS  Article  Google Scholar 

  10. Elias J, Tena-Zaera R, Levy-Clement C (2008) Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays. J Phys Chem C 112:5736–5741

    CAS  Article  Google Scholar 

  11. Skotheim TA, Reynolds JR (2006) Handbook of conducting polymers, 3rd edn. Processing and applications, 10–12

  12. Kantzas T, O’Neil K, Semenikhin OA (2007) The effect of preparation conditions on the photoelectrochemical properties of polybithiophene based photoelectrodes. Electrochim Acta 53:1226–1235

    Article  Google Scholar 

  13. Konno A, Mogi I, Watanabe K (2001) Effect of strong magnetic fields on the photocurrent of a poly(N-methylpyrrole) modified electrode. J Electroanal Chem 507:202–205

    CAS  Article  Google Scholar 

  14. Semenikhin OA, Ovsyannikova EV, Alpatova NM, Rotenberg ZA, Kazarinov VE (1999) Electrochemical and photoelectrochemical behaviour of poly-3-methylthiophene and polybithiophene in non-aqueous solutions: 1. Dark and light processes in systems with and without cathodic doping. J Electroanal Chem 463:190–199

    CAS  Article  Google Scholar 

  15. Semenikhin OA, Stromberg C, Ehrenburg MR, Konig U, Schultze JW (2001) Photoelectrochemical properties and microstructuring of polythiophenes. Electrochim Acta 47:171–180

    CAS  Article  Google Scholar 

  16. Bacskai J, Inzelt G, Bartl A, Dunsch L, Paasch G (1994) In situ electrochemical ESR investigations of the growth of one- and two-dimensional polypyrrole films. Synth Met 67:227–230

    CAS  Article  Google Scholar 

  17. Petr A, Dunsch L (1996) Direct evidence of indamine cation radicals in the anodic oxidation of aniline by in situ ESR spectroscopy. J Electroanal Chem 419:55–59

    CAS  Article  Google Scholar 

  18. Rapta P, Neudeck A, Petr A, Dunsch L (1998) In situ EPR/UV–VIS spectroelectrochemistry of polypyrrole redox cycling. J Chem Soc Faraday Trans 94:3625–3630

    CAS  Article  Google Scholar 

  19. Neudeck A, Petr A, Dunsch L (1999) Separation of the ultraviolet–visible spectra of the redox states of conducting polymers by simultaneous use of electron-spin resonance and ultraviolet–visible spectroscopy. J Phys Chem B 103:912–919

    CAS  Article  Google Scholar 

  20. Cravino A, Neugebauer H, Luzzati S, Catellani M, Petr A, Dunsch L, Sariciftci SN (2002) Positive and negative charge carriers in doped or photoexcited polydithienothiophenes: a comparative study using Raman, infrared, and electron spin resonance spectroscopy. J Phys Chem B 106:3583–3591

    CAS  Article  Google Scholar 

  21. Damlin P, Kvarnström C, Petr A, Ek P, Dunsch L, Ivaska A (2002) In situ resonant Raman and ESR spectroelectrochemical study of electrochemically synthesized poly(p-phenylenevinylene). J Solid State Electrochem 6:291–301

    CAS  Article  Google Scholar 

  22. Rapta P, Lukkari J, Tarabek J, Salomaki M, Jussila M, Yohannes G, Riekkola ML, Kankare J, Dunsch L (2004) Ultrathin polyelectrolyte multilayers: in situ ESR/UV–Vis–NIR spectroelectrochemical study of charge carriers formed under oxidation. Phys Chem Chem Phys 6:434–441

    CAS  Article  Google Scholar 

  23. Dmitrieva E, Harima Y, Dunsch L (2009) Influence of phenazine structure on polaron formation in polyaniline: in situ electron spin resonance-ultraviolet/visible–near-infrared spectroelectrochemical study. J Phys Chem B 113:16131–16141

    CAS  Article  Google Scholar 

  24. Dmitrieva E, Dunsch L (2011) How linear is “linear” polyaniline? J Phys Chem B 115:6401–6411

    CAS  Article  Google Scholar 

  25. Kellenberger A, Dmitrieva E, Dunsch L (2012) Structure dependence of charged states in “linear” polyaniline as studied by in situ ATR–FTIR spectroelectrochemistry. J Phys Chem B 116:4377–4385

    CAS  Article  Google Scholar 

  26. Inganas O, Skotheim TA, Feldberg SW (1986) Photoelectrochemistry at the n-silicon/polymer electrolyte interface. Solid State Ionics I 18–19:332–337

    Article  Google Scholar 

  27. Tsai JH, Tu WR, Liu CL et al (2009) Synthesis and properties of new small band gap conjugated polymers: methine bridged poly(3,4-ethylenedioxypyrrole). Polym J 41:363–369

    CAS  Article  Google Scholar 

  28. Caramori S, Cazzanti S, Marchini L et al (2008) Dye-sensitized solar cells based on PEDOP as a hole conductive medium. Inorg Chim Acta 361:627–634

    CAS  Article  Google Scholar 

  29. Schottland P, Zong K, Gaupp CL et al (2000) Poly(3,4-alkylenedioxypyrrole)s: highly stable electronically conducting and electrochromic polymers. Macromolecules 33:7051–7061

    CAS  Article  Google Scholar 

  30. Okano M, Itoh K, Kikuchi E, Fujishima A (1987) Area-selective deposition of organic conducting polymers on semiconductors: polypyrrole–ZnO system. J Appl Phys 62:2143–2145

    CAS  Article  Google Scholar 

  31. Wang Z-L, Guo R, Li G-R, Lu H-L, Liu Z-Q, Xiao F-M et al (2012) Polyaniline nanotube arrays as high-performance flexible electrodes for electrochemical energy storage devices. J Mater Chem 22:2401–2404

    CAS  Article  Google Scholar 

  32. Tang Q, Lin L, Zhao X, Huang K, Wu J (2012) p–n heterojunction on ordered ZnO nanowires/polyaniline microrods double array. Langmuir 28:3972–3978

    CAS  Article  Google Scholar 

  33. Kateb M, Ahmadi V, Mohseni M (2013) Fast switching and high contrast electrochromic device based on PEDOT nanotube grown on ZnO nanowires. Sol Energy Mater Sol Cells 112:57–64

    CAS  Article  Google Scholar 

  34. Li W, Hao Y, Qiao X, Zhang L, Yang M, Cai S (1999) Photoelectrochemical studies on the nanostructured ZnO/Dye/PPy electrode. Acta Phys-Chim Sin 15:909–910

    CAS  Google Scholar 

  35. Hao Y, Yang M, Li W, Qiao X, Zhang L, Cai S (2000) Photoelectrochemical solar cell based on ZnO/dye/polypyrrole film electrode as photoanode. Sol Energy Mater Sol Cells 60:349–359

    CAS  Article  Google Scholar 

  36. Shen Y, Tefashe UM et al (2009) Photoelectrochemical kinetics of eosin Y-sensitized zinc oxide films investigated by SEM under illumination with different LED. Electrochim Acta 55:458–464

    CAS  Article  Google Scholar 

  37. Zhang H, Zong R, Zu Y (2009) Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. J Phys Chem C 113:4605–4611

    CAS  Article  Google Scholar 

  38. Janaky C, Tacconi NR, Chanmanee W, Rajeshwar K (2012) Electrodeposited polyaniline in a nanoporous WO3 matrix: an organic/inorganic hybrid exhibiting both p-and n-type photoelectrochemical activity. J Phys Chem C 116:4234–4242

    CAS  Article  Google Scholar 

  39. Noufi R, Frank AJ, Nozik AJ (1981) Stabilization of n-type silicon photoelectrodes to surface oxidation in aqueous electrolyte solution and mediation of oxidation reaction by surface-attached organic conducting polymer. J Am Chem Soc 103:1849–1850

    CAS  Article  Google Scholar 

  40. Fan F-RF, Wheeler BL, Bard AJ, Noufi R (1981) Semiconductor electrodes: XXXIX. Techniques for stabilization of n-silicon electrodes in aqueous solution photoelectrochemical cells. J Electrochem Soc 128:2042–2045

    CAS  Article  Google Scholar 

  41. Skotheim T, Lundstrom I, Prejza J (1981) Stabilization of n-Si photoanodes to surface corrosion in aqueous electrolyte with a thin film of polypyrrole. J Electrochem Soc 128:1625–1626

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank the Hungarian Scientific Research Fund (OTKA) for financial support (Project number: OTKA 105773). This research was partially realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program – Elaborating and operating an inland student and researcher personal support system.” This work was also supported by National Development Agency, through the project “TÁMOP-4.2.2.A-11/1/KONV-2012-0047 Biological and Environmental Responses by new functional materials.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Visy.

Additional information

This paper is dedicated to Professor Lothar Dunsch in recognition of his outstanding contribution to the understanding of the redox properties of conducting polymers.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krivan, E.P., Ungor, D., Janáky, C. et al. Optimization of the photoactivity of conducting polymer covered ZnO nanorod composite electrodes. J Solid State Electrochem 19, 37–44 (2015). https://doi.org/10.1007/s10008-014-2587-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2587-8

Keywords

  • Hybrid
  • Photocorrosion
  • ZnO
  • Conducting polymer
  • Spectroelectrochemistry