Skip to main content
Log in

Systematic investigation on determining chemical diffusion coefficients of lithium ion in Li1 + x VPO4F (0 ≤ x ≤ 2)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The chemical diffusion coefficients of lithium ion (\( {D}_{{\mathrm{Li}}^{+}} \)) in Li1 + x VPO4F (0 ≤ x ≤ 2) between 3.0 and 0.01 V are systematically analyzed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic intermittent titration technique (GITT). The results indicate that the \( {D}_{{\mathrm{Li}}^{+}} \) values depend heavily on the voltage state. Based on the results from EIS and GITT, the diffusion coefficients (\( {D}_{{\mathrm{Li}}^{+}} \)) measured in a single-phase region below 1.7 V have relatively steady values of about 10−9 (EIS) and 10−10 (GITT) cm2 s−1, respectively, while the \( {D}_{{\mathrm{Li}}^{+}} \) values in the single-phase region above 1.9 V decrease rapidly from 10−9 to 10−11 cm2 s−1 due to concentration of lithium ions in the bulk LiVPO4F. The Li+ chemical diffusion coefficients measured in the two-phase region by GITT range a lot from 10−9 to 10−14 cm2 s−1, while the \( {D}_{{\mathrm{Li}}^{+}} \) values in the two-phase region determined by CV are around 10−10 cm2 s−1. By the GITT, the \( {D}_{{\mathrm{Li}}^{+}} \) values in the two-phase region vary in non-linear shape with the charge–discharge voltage, which is ascribed to strong interactions of Li+ with other ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reddy MV, Subba Rao GV, Chowdari BV (2013) Chem Rev 113:5364–5457

    Article  CAS  Google Scholar 

  2. Lu L, Han X, Li J, Hua J, Ouyang M (2013) J Power Sources 226:272–288

    Article  CAS  Google Scholar 

  3. Tarascon JM (2010) Philos Trans A 368:3227–3241

    Article  Google Scholar 

  4. Wu F, Wang Z, Li X, Guo H (2011) J Mater Chem 21:12675–12681

    Article  CAS  Google Scholar 

  5. Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ (2013) Chem Soc Rev 42:9011–9034

    Article  CAS  Google Scholar 

  6. Wu HB, Chen JS, Hng HH, Lou XWD (2012) Nanoscale 4:2526–2542

    Article  CAS  Google Scholar 

  7. Nguyen HT, Zamfir MR, Duong LD, Lee YH, Bondavalli P, Pribat D (2012) J Mater Chem 22:24618–26426

    Article  CAS  Google Scholar 

  8. Kim J-G, Shi D, Park M-S, Jeong G, Heo Y-U, Seo M, Kim Y-J, Kim J, Dou S (2013) Nano Res 6:365–372

    Article  CAS  Google Scholar 

  9. Cheng L, Yan J, Zhu G-N, Luo J-Y, Wang C-X, Xia Y-Y (2010) J Mater Chem 20:595–602

    Article  CAS  Google Scholar 

  10. Jung H-G, Myung S-T, Yoon CS, Son S-B, Oh KH, Amine K, Scrosati B, Sun Y-K (2011) Energy Environ Sci 4:1345–1351

    Article  CAS  Google Scholar 

  11. Aravindan V, Chuiling W, Madhavi S (2012) RSC Adv 2:7534–7539

    Article  CAS  Google Scholar 

  12. Ma R, Shao L, Wu K, Shui M, Wang D, Pan J, Long N, Ren Y, Shu J (2013) ACS Appl Mater Interfaces 5:8615–8627

    Article  CAS  Google Scholar 

  13. Mba JMA, Masquelier C, Suard E, Croguennec L (2012) Chem Mater 24:1223–1234

    Article  Google Scholar 

  14. Barker J, Gover RKB, Burns P, Bryan A (2005) Electrochem Solid-State Lett 8:A285–A287

    Article  CAS  Google Scholar 

  15. Plashnitsa LS, Kobayashi E, Okada S, Yamaki J (2011) Electrochim Acta 56:1344–1351

    Article  CAS  Google Scholar 

  16. Barker J, Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL (2005) J Power Sources 146:516–520

    Article  CAS  Google Scholar 

  17. Mba JMA, Croguennec L, Basir NI, Barker J, Masquelier C (2012) J Electrochem Soc 159:A1171–A1175

    Article  CAS  Google Scholar 

  18. Barker J, Saidi MY, Swoyer JL (2003) J Electrochem Soc 150:A1394–A1398

    Article  CAS  Google Scholar 

  19. Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL, Barker J (2006) Solid State Ionics 177:2635–2638

    Article  CAS  Google Scholar 

  20. Li Y, Zhou Z, Gao XP, Yan J (2006) J Power Sources 160:633–637

    Article  CAS  Google Scholar 

  21. Zheng J-C, Zhang B, Yang Z-H (2012) J Power Sources 202:380–383

    Article  CAS  Google Scholar 

  22. Kosova NV, Devyatkina ET, Slobodyuk AB, Gutakovskii AK (2014) J Solid State Electrochem 18:1389–1399

    Article  CAS  Google Scholar 

  23. Sun X, Xu Y, Jia M, Ding P, Liu Y, Chen K (2013) J Mater Chem A 1:2501–2507

    Article  CAS  Google Scholar 

  24. Wang J, Li X, Wang Z, Guo H, Zhang Y, Xiong X, He Z (2013) Electrochim Acta 91:75–81

    Article  CAS  Google Scholar 

  25. Wang J, Wang Z, Li X, Guo H, Xiao W, Huang S, He Z (2013) J Solid State Electrochem 17:1–8

    Article  Google Scholar 

  26. Barker J, Saidi MY, Gover RKB, Burns P, Bryan A (2007) J Power Sources 174:927–931

    Article  CAS  Google Scholar 

  27. Qiao X, Yang J, Wang Y, Chen Q, Zhang T, Liu L, Wang X (2012) J Solid State Electrochem 16:1211–1217

    Article  CAS  Google Scholar 

  28. Rui XH, Ding N, Liu J, Li C, Chen CH (2010) Electrochim Acta 55:2384–2390

    Article  CAS  Google Scholar 

  29. Rui XH, Yesibolati N, Li SR, Yuan CC, Chen CH (2011) Solid State Ionics 187:58–63

    Article  CAS  Google Scholar 

  30. Tan KS, Reddy MV, Rao GVS, Chowdari BVR (2005) J Power Sources 147:241–248

    Article  CAS  Google Scholar 

  31. Tang SB, Lai MO, Lu L (2008) J Alloy Compd 449:300–303

    Article  CAS  Google Scholar 

  32. Tang SB, Lai MO, Lu L (2008) Mater Chem Phys 111:149–153

    Article  CAS  Google Scholar 

  33. Xie J, Tanaka T, Imanishi N, Matsumura T, Hirano A, Takeda Y, Yamamoto O (2008) J Power Sources 180:576–581

    Article  CAS  Google Scholar 

  34. Ding N, Xu J, Yao YX, Wegner G, Fang X, Chen CH, Lieberwirth I (2009) Solid State Ionics 180:222–225

    Article  CAS  Google Scholar 

  35. Wang J, Wang Z, Li X, Guo H, Wu X, Zhang X, Xiao W (2013) Electrochim Acta 87:224–229

    Article  CAS  Google Scholar 

  36. Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQ (2006) J Power Sources 159:717–720

    Article  CAS  Google Scholar 

  37. Prosini PP, Lisi M, Zane D, Pasquali M (2002) Solid State Ionics 148:45–51

    Article  CAS  Google Scholar 

  38. Allen JB, Larry RF (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  39. Churikov AV, Ivanishchev AV, Ushakov AV, Romanova VO (2014) J Solid State Electrochem 18:1425–1441

    Article  CAS  Google Scholar 

  40. Montella C (2012) J Electroanal Chem 667:38–47

    Article  CAS  Google Scholar 

  41. Dimov N, Fukuda K, Umeno T, Kugino S, Yoshio M (2003) J Power Sources 114:88–95

    Article  CAS  Google Scholar 

  42. Wang J, Li X, Wang Z, Guo H, Li Y, He Z, Huang B (2013) J Alloy Compd 581:836–842

    Article  CAS  Google Scholar 

  43. Shahul Hameed A, Nagarathinam M, Schreyer M, Reddy MV, Chowdari BVR, Vittal JJ (2013) J Mater Chem A 1:5721–5726

    Article  CAS  Google Scholar 

  44. Venkateswara Rao C, Leela Mohana Reddy A, Ishikawa Y, Ajayan PM (2011) ACS Appl Mater Interfaces 3:2966–2972

    Article  Google Scholar 

  45. Shaju KM, Subba Rao GV, Chowdari BVR (2003) Electrochim Acta 48:2691–2703

    Article  CAS  Google Scholar 

  46. Ho C, Raistrick ID, Huggins RA (1980) J Electrochem Soc 127:343–350

    Article  CAS  Google Scholar 

  47. Meethong N, Kao Y-H, Carter WC, Chiang Y-M (2010) Chem Mater 22:1088–1097

    Article  CAS  Google Scholar 

  48. Weppner W, Huggins RA (1977) J Electrochem Soc 124:1569–1577

    Article  CAS  Google Scholar 

  49. Delacourt C, Poizot P, Tarascon J-M, Masquelier C (2005) Nat Mater 4:254–260

    Article  CAS  Google Scholar 

  50. Levi MD, Sigalov S, Salitra G, Nayak P, Aurbach D, Daikhin L, Perre E, Presser V (2013) J Phys Chem C 117:15505–15514

    Article  CAS  Google Scholar 

  51. Churikov AV, Ivanishchev AV, Ivanishcheva IA, Sycheva VO, Khasanova NR, Antipov EV (2010) Electrochim Acta 55:2939–2950

    Article  CAS  Google Scholar 

  52. Zhong S, Wu L, Liu J (2012) Electrochim Acta 74:8–15

    Article  CAS  Google Scholar 

  53. Churikov AV, Ivanishchev AV, Ivanishcheva IA, Zapsis KV, Gamayunova IM, Sycheva VO (2008) Russ J Electrochem 44:530–542

    Article  CAS  Google Scholar 

  54. Markevich E, Levi MD, Aurbach D (2005) J Electrochem Soc 152:A778–A786

    Article  CAS  Google Scholar 

  55. He Z, Wang Z, Wu F, Guo H, Li X, Xiong X (2012) J Alloy Compd 540:39–45

    Article  CAS  Google Scholar 

  56. Mukaibo H, Momma T, Mohamedi M, Osaka T (2005) J Electrochem Soc 152:A560–A565

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (973 Program, 2014CB643406) and supported by the Fundamental Research Funds for the Central Universities of Central South University (2014zzts026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, X., Wang, Z. et al. Systematic investigation on determining chemical diffusion coefficients of lithium ion in Li1 + x VPO4F (0 ≤ x ≤ 2). J Solid State Electrochem 19, 153–160 (2015). https://doi.org/10.1007/s10008-014-2586-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2586-9

Keywords

Navigation