Electrodeposition of composites consisting of polypyrrole and microporous zeolites


Polypyrrole/zeolite composites were synthesized by electrochemical polymerization of pyrrole monomer at ambient temperature (22 ± 1 °C) in aqueous suspension of pure microporous zeolite particles. Electrodeposition was performed by using the method of constant potential. The proton form of Beta zeolites with SiO2/Al2O3 ratios of 25 and 300 and Y zeolites with SiO2/Al2O3 ratios of 12 and 80 was used in this work. The chemical compositions and the acidic properties of the zeolites were studied by inductively coupled plasma optical emission spectrometer and potentiometric acid–base titration. Polypyrrole/zeolite composite films deposited on platinum and indium tin oxide glass electrodes were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy with attenuated total reflectance, X-ray diffraction, and transmission electron micrographs, and their electrochemical behavior was studied by cyclic voltammetry. These measurements showed that polymerization of pyrrole took place on the outer surfaces of the host zeolite crystals. The oxidized cationic polypyrrole was charge-balanced by the anionic groups present in the zeolite framework. Content of the anionic groups in the zeolites was found to be important for the electrochemical behavior of the polypyrrole/zeolite composites.

This is a preview of subscription content, access via your institution.



  1. 1.

    Nakayama M, Yano J, Nakayama K, Ogura K (2002) Synth Met 128:57–62

    CAS  Article  Google Scholar 

  2. 2.

    Nakayama M, Yano J, Nakaoka K, Ogura K (2003) Synth Met 138:419–422

    CAS  Article  Google Scholar 

  3. 3.

    Cheng QL, Pavlinek V, Lengalova A, Li CZ, He Y, Saha P (2006) Microporous Mesoporous Mater 93:263–269

    CAS  Article  Google Scholar 

  4. 4.

    Arvand M, Ansari R, Heydari L (2011) Mater Sci Eng C (2011) 31:1398–1404

  5. 5.

    Scelta D, Ceppatelli M, Santoro M, Bini R, Gorelli FA, Perucchi A, Mezouar M, van der Lee A, Haines J (2014) Chem Mater 26:2249–2255

    CAS  Article  Google Scholar 

  6. 6.

    Salimian M, Okhay O, Krishna R, Titus E, Gracio J, Guerra L, Ventura J, Freire C, Pereira C, Babu PR, Khairnar RS (2013) Polym Int 62:1583–1588

    CAS  Google Scholar 

  7. 7.

    Lira-Cantú M, Gómez-Romero P (1998) Chem Mater 10(3):698–704

    Article  Google Scholar 

  8. 8.

    Dai T, Yang X, Lu Y (2007) Mater Lett 61:3142–3145

    CAS  Article  Google Scholar 

  9. 9.

    http://izasc.fos.su.se/fmi/xsl/IZA-SC/ftc_fw.xsl?-db=Atlas_main&-lay=fw&-max=25&STC=BEA&-find. Accessed 16 May 2014

  10. 10.

    http://izasc.fos.su.se/fmi/xsl/IZA-SC/ftc_fw.xsl?-db=Atlas_main&-lay=fw&-max=25&STC=FAU&-find. Accessed 16 May 2014

  11. 11.

    Aho A, Kumar N, Eränen K, Ziolek M, Decyk P, Lashkul AV, Salmi T, Holmbom B, Hupa M, Murzin DY (2010) Fuel 89:1992–200

    CAS  Article  Google Scholar 

  12. 12.

    Silva B, Figueiredo H, Soares OSGP, Pereira MFR, Figueiredo JL, Lewandowska AE, Lercher JA, BaNares MA, Neves IC, Tavares T (2012) Appl Catal B 117–118:406–413

    Article  Google Scholar 

  13. 13.

    De Baerdemaeker T, Yilmaz B, Müller U, Feyen M, Xiao FS, Zhang WP, Tatsumi T, Gies H, Bao XH, De Vos D (2013) J Catal 308:73–81

    Article  Google Scholar 

  14. 14.

    Tonetto G, Atias J, De Lasa H (2004) Appl Cata A 270:9–25

    CAS  Article  Google Scholar 

  15. 15.

    Brueva T, Mishin I, Kapustin G, Zelinsky N (2001) Thermochim Acta 379:15–23

    CAS  Article  Google Scholar 

  16. 16.

    Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Chem Rev 110:4724–4771

    CAS  Article  Google Scholar 

  17. 17.

    Mativetsky JM, Tarver J, Yang XF, Koel BE, Loo YL (2014) Org Electron 15:631–368

    CAS  Article  Google Scholar 

  18. 18.

    Brett CMA, Thiemann C (2002) J Electroanal Chem 538–539:215–222

    Article  Google Scholar 

  19. 19.

    Salmon M, Logan AF, Krounbi AJ, Bargon J (1982) Mol Cryst Liq Cryst 83:265–276

    Article  Google Scholar 

  20. 20.

    Herbelin A, Westall JC (1999) FITEQL: a computer program for determination of chemical equilibrium constants from experimental data [computer program], vol 4.0. Department of Chemistry, Oregon State University, Corvallis

    Google Scholar 

  21. 21.

    Latonenl R, Akieh MN, Vavra K, Bobacka J, Ivaska A (2013) Electroanalysis 25:991–1004

    Article  Google Scholar 

  22. 22.

    Benesi HA, Jones AC (1959) J Phys Chem 63(2):179–182

    CAS  Article  Google Scholar 

  23. 23.

    Gómez CMB, Juarez JM, Martinez ML, Beltramone AR, Cussa J, Anunziata OA (2013) Mater Res Bull 48:661–667

    Article  Google Scholar 

  24. 24.

    Xu LH, Yang F, Su C, Ji LL, Zhang C (2014) Electrochim Acta 130:148–155

    CAS  Article  Google Scholar 

  25. 25.

    Furulawa Y, Tazawa S, Fujii Y, Harada I (1988) Synth Met 24:329–341

    Article  Google Scholar 

  26. 26.

    Upadhyay J, Kumar A (2013) Mater Sci Eng C 33:4900–4904

    CAS  Article  Google Scholar 

  27. 27.

    Zhao HB, Li L, Yang J, Zhang YM, Li H (2008) Electrochem Commun 10:876–879

    CAS  Article  Google Scholar 

Download references


This work is part of the activities of Åbo Akademi Process Chemistry Centre (ÅA-PCC), Finland.

Author information



Corresponding author

Correspondence to Ari Ivaska.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Kumar, N., Li, J. et al. Electrodeposition of composites consisting of polypyrrole and microporous zeolites. J Solid State Electrochem 19, 59–70 (2015). https://doi.org/10.1007/s10008-014-2581-1

Download citation


  • Polypyrrole
  • Microporous zeolite
  • Electrochemical polymerization
  • Composite film
  • Anionic groups