Abstract
Widespread availability of fuel cells is being delayed due to the scarcity and high expense of precious metal catalysts, which presently provide the most efficient oxygen reduction reaction (ORR). Research has shown efficient electrocatalysis towards ORR from carbon materials offers a possible alternative to precious metal catalysts. Increasing focus is being given to the provision of graphene by the reduction of graphene oxide (GO) as a facile method for possible up-scaled production. Presented is a novel method for the production of electrocatalytic graphene-like material, involving the hydrothermal reduction of GO suspended in 0.1 M sulphuric acid (denoted as rGO H2SO4). The rGO H2SO4 sample provides a more efficient electron transfer during ORR than GO reduction in hydrazine (denoted as rGO N2H4), a commonly employed, but toxic reducing agent. The overall current observed from the rGO H2SO4 preparation is similar to that provided by rGO N2H4 during diffusion-controlled linear sweep voltammetry analysis. Oxygen reduction catalysis of the rGO H2SO4 sample is seen to be promoted by the incorporation of sulphur, along with the high level of surface defects created after GO reduction. The diffusion-dependent conditions of cyclic voltammetry analysis confirms a pseudocapacitive response from the rGO preparations. The stability of this pseudocapacitance is significant for all reduced graphene oxide (rGO) samples discussed, opening the possible dual application of both electrical power generation and power storage capabilities.
Similar content being viewed by others
References
Kim J, Cote LJ, Huang J (2012) Acc Chem Res 45:1356–1364
Buchsteiner A, Lerf A, Pieper J (2006) J Phys Chem B 110:22328–22338
Schniepp H, Li J, McAllister M, Sai H, Herrera-Alonso M, Adamson D, Prudhomme RK, Car R, Saville DA, Aksay IA (2006) J Phys Chem B 110:8535–8539
Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Chem Mater 18:2740–2749
Hontoria-Lucas C, Lopez-Peinado AJ, Lopez-Gonzalez JD, Rojas-Cervantes ML, Martin-Aranda RM (1995) Carbon 33:1585–1592
Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M (2009) Adv Funct Mater 19:2577–2583
Sutar DS, Narayanam PK, Singh G, Botcha VD, Talwar SS, Srinivasa RS, Major SS (2012) Thin Solid Films 520:5991–5996
Park S, An SJ, Potts J, Velamakanni A, Murali S, Ruoff R (2011) Carbon 49:3019–3023
Shin H, Kim K, Benayad A, Yoon S, Park H, Jung I, Jin M, Jeong H, Kim J, Choi J, Lee Y (2009) Adv Funct Mater 19:1987–1992
Su CY, Xu YP, Zhang WJ, Zhao JW, Liu AP, Tang XH, Tsai CH, Huang YZ, Li LJ (2010) ACS Nano 4:5285–5292
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558–1565
Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Adv Mater 20:3557–3561
Si Y, Samulski ET (2008) Nano Lett 8:1679–1682
Perera SD, Mariano RG, Nijem N, Chabal Y, Ferraris JP, Balkus KJ Jr (2012) J Power Sources 215:1–10
Chua CK, Pumera M (2014) Chem Soc Rev 43:291–312
Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Langmuir 19:6050–6055
Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) J Phys Chem C 112:8192–8195
Cote LJ, Cruz-Silva R, Huang JX (2009) J Am Chem Soc 131:11027–11032
Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H-B, Xiao F-S (2010) NanoToday 5:15–20
Mao S, Pu H, Chen J (2012) RSC Adv 2:2643–2662
Hassan H, Abdelsayed V, Khder A, AbouZeid K, Terner J, El-Shall M, Al-Resayes SI, El-Azhary AA (2009) J Mater Chem 19:3832–3837
Wei ZQ, Wang DB, Kim S, Kim SY, Hu YK, Yakes MK, Laracuente AR, Dai ZT, Marder SR, Berger C, King WP, de Heer WA, Sheehan PE, Riedo E (2010) Science 328:1373–1376
Zhu YW, Stoller MD, Cai WW, Velamakanni A, Piner RD, Chen D, Ruoff RS (2010) ACS Nano 4:1227–1233
Baraket M, Walton SG, Wei Z, Lock EH, Robinson JT, Sheehan P (2010) Carbon 48:3382–3390
Chen WF, Yan LF, Bangal PR (2010) Carbon 48:1146–1152
Sokolov DA, Shepperd KR, Orlando TM (2010) J Phys Chem Lett 1:2633–2636
Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA, Ruoff RS (2009) Carbon 47:145–152
Yao PP, Chen PL, Jiang L, Zhao HP, Zhu HF, Zhou D, Hu WP, Han BH, Liu MH (2010) Adv Mater 22:5008–5012
Zhu W, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Carbon 48:2118–2122
McAllister M, Li J, Adamson D, Schniepp H, Abdala A, Liu J, Herrera-Alonso M, Milius DL, Car R, Prudhomme RK, Aksay IA (2007) Chem Mater 19:4396–4404
Min K, Han TH, Kim J, Jung J, Jung C, Hong SM, Koo CM (2012) J Colloid Interface Sci 383:36–42
Bosch-Navarro C, Coronado E, Martí-Gastaldo C, Sánchez-Royo JF, Gómez MG (2012) Nanoscale 4:3977–3982
Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Chem Mater 21:2950–2956
Gao W, Alemany L, Ci L, Ajayan P (2009) Nat Chem 1:403–408
Tien HN, Luan VH, Lee TK, Kong B-S, Chung JS, Kim EJ, Hur SH (2012) Chem Eng J 211–212:97–103
Lin L, Zhang S (2012) J Mater Chem 22:14385–14393
Fan L-Z, Liu J-L, Ud-Din R, Yan X, Qu X (2012) Carbon 50:3724–3730
Jiaoxing X (2013) Chemsuschem 6:493–499
Lee KR, Lee KU, Lee JW, Ahn BT, Woo SI (2010) Electrochem Commun 12:1052–1055
Huang C, Li C, Shi G (2012) Energy Environ Sci 5:8848–8868
Hummers W, Offeman R (1958) J Am Chem Soc 80:1339–1339
Kong HX (2013) Curr Opin Solid State Mater Sci 17:31–37
Eigler S, Grimm S, Hirsch A (2014) Chem Eur J 20:984–989
Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Nano Lett 10:4863–4868
Yan J, Liu JP, Fan ZJ, Wei T, Zhang LJ (2012) Carbon 50:2179–2188
Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Nano Lett 7:3499–3503
Lomeda JR, Doyle CD, Kosynkin DV, Hwang W-F, Tour JM (2008) J Am Chem Soc 130:16201–16206
Gokus T, Nair RR, Bonetti A, Bohmler M, Lombardo A, Novoselov KS, Geim AK, Ferrari AC, Hartschuh A (2009) ACS Nano 3:3963–3968
Trusovas R, Ratautas K, Raciukaitis G, Barkauskas J, Stankeviciene I, Niaura G, Mazeikiene R (2013) Carbon 52:574–582
Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Eur Phys J Spec Top 148:171–176
Rohrl J, Hundhausen M, Emtsev K, Seyller T, Graupner R, Ley L (2008) Appl Phys Lett 92:201918–201921
Ferrari AC (2007) Solid State Commun 143:47–57
Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Pisanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Phys Rev Lett 97:187401
Boutchich M, Jaffré A, Alamarguy D, Alvarez J, Barras A, Tanizawa Y, Tero R, Okada H, Thu TV, Kleider JP, Sandhu A (2013) J Phys Conf Ser 433:012001
Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) J Phys Chem C 115:17009–17019
Fan ZJ, Wang K, Wei T, Yan J, Song LP, Shao B (2010) Carbon 48:1686–1689
Li Y, Lv X, Lu J, Li J (2010) J Phys Chem C 114:21770–21774
He D, Kou Z, Xiong Y, Cheng K, Chen X, Pan M, Mu S (2014) Carbon 66:312–319
Wang W, Wang Z, Liu Y, Li N, Wang W, Gao J (2012) Mater Res Bull 47:2245–2251
Pham VH, Cuong TV, Hur SH, Oh E, Kim EJ, Shin EW, Chung JS (2011) J Mater Chem 21:3371–3377
Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Nano Lett 9:1593–1597
Lerf A, Buchsteiner A, Pieper J, Schottl S, Dekany I, Szabo T, Boehm HP (2006) J Phys Chem Solids 67:1106–1110
Liu C, Hu G, Gao H (2012) J Supercrit Fluids 63:99–104
Antolini E (2012) Appl Catal B Environ 123–124:52–68
Ban FY, Majid SR, Huang NM, Lim HN (2012) Int J Electrochem Sci 7:4345–4351
Hsieh C-T, Hsu S-M, Lin J-Y, Teng H (2011) J Phys Chem C 115:12367–12374
Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Angew Chem Int Ed 51:11496–11500
Wan S, Wang L, Xue Q (2010) Electrochem Commun 12:61–65
Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Adv Mater 20:4490–4493
Guo H-L, Peng S, Kang X, Ning S-K (2013) J Mater Chem 1:2248–2255
Pham VH, Pham HD, Dang TT, Hur SH, Kim EJ, Kong BS, Kim S, Chung JS (2012) J Mater Chem 22:10530–10536
Vesel A, Mozetic M (2009) J Phys Conf Ser 162:012015
Choi CH, Park SH, Woo SI (2011) Green Chem 13:406–412
Seredych M, Tamashausky AV, Bandosz TJ (2010) Adv Funct Mater 20:1670–1679
Ellis AV, Al-deen A, Dalal H, Andersson GG (2013) J Phys Chem C 117:21312–21319
Chen W, Yan L, Bangal PR (2010) J Phys Chem C 114:19885–19890
Zhao G, Jiang L, He Y, Li J, Dong H, Wang X, Hu W (2011) Adv Mater 23:3959–3963
Liu F, Sun J, Zhu L, Meng X, Qi C, Xiao F-S (2012) J Mater Chem 22:5495–5502
Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva IV, Firsov AA (2004) Science 306:666–669
Wu D, Zhang F, Liang H, Feng X (2012) Chem Soc Rev 41:6160–6177
Gao X, Jang J, Nagase S (2010) J Phys Chem C 114:832–842
Zalan Z, Lazar L, Fulop F (2005) Curr Org Chem 9:357–376
Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, Hoboken
Yang H-H, McCreery RL (2000) J Electrochem Soc 147:3420–3428
Song C, Zhang J (2008) In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers, vol 12. Springer, Vancouver
Wu J, Yang H (2013) Acc Chem Res 46:1848–1857
Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S (2012) ACS Nano 6:205–211
Wohlgemuth S-A, White RJ, Willinger M-G, Titirici M-M, Antonietti M (2012) Green Chem 14:1515–1523
Park J-E, Jang YJ, Kim YJ, Song MS, Yoon S, Kim DH, Kim SJ (2014) Phys Chem Chem Phys 16:103–109
Seredych M, Bandosz TJ (2014) Carbon 66:227–233
Slater JC (1964) J Chem Phys 41:3199
Lu Z-J, Bao S-J, Gou Y-T, Cai C-J, Ji C-C, Xu M-W, Song J, Wang R (2013) RSC Adv 3:3990–3995
Wu J, Wang Y, Zhang D (2011) Adv Mater Res 197–198:667–671
Huang D, Zhang B, Zhang Y, Zhaan F, Xu X, Shen Y, Wang M (2013) J Mater Chem A 1:1415–1420
Xu S, Yong L, Wu P (2013) ACS Appl Mater Interfaces 5:654–662
Fu X, Liu Y, Cao X, Jin J, Liu Q, Zhang J (2013) Appl Catal B Environ 130–131:143–151
He D, Jiang Y, Lv H, Pan M, Mu S (2013) Appl Catal B Environ 132–133:379–388
Koutecky J, Levich VG (1958) Zh Fiz Khim 32:1565–1575
Koutecky J, Levich VG (1957) Dokl Akad Nauk SSSR 117:441–444
Masa J, Batchelor-McAuley C, Schuhmann W, Compton RG (2014) Nano Res 7:71–78
Yang Z, Nie H, Chen X, Chen X, Huang S (2013) J Power Sources 236:238–249
Yang S, Feng X, Wang X, Müllen K (2011) Angew Chem Int Ed 50:5339–5343
Zhou X, Yang Z, Nie H, Yao Z, Zhang L, Huang S (2011) J Power Sources 196:9970–9974
Yang Z, Zhou X, Nie H, Yao Z, Huang S (2011) ACS Appl Mater Interfaces 3:2601–2606
Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319
You S, Luzan SM, Szabó T, Talyzin AV (2013) Carbon 52:171–180
Farghali AA, Bahgat M, El Rouby WMA, Khedr MH (2013) J Alloys Compd 555:193–200
Mishra AK, Ramaprabhu S (2011) Desalination 282:39–45
Jiang Y, Chen D, Song J, Jiao Z, Ma Q, Zhang H, Cheng L, Zhao B, Chu Y (2013) Electrochim Acta 91:173–178
Radich JG, Kamat PV (2012) ACS Catal 2:807–816
Li Y, van Zijll M, Chiang S, Pan N (2011) J Power Sources 196:6003–6006
Guin PS, Das S, Mandal PC (2008) Int J Electrochem Sci 3:1016–1028
Guin PS, Das S, Mandal PC (2010) J Phys Org Chem 23:477–482
Gill R, Stonehill HI (1952) J Chem Soc:1845–1857
Furman NH, Stone KG (1948) J Am Chem Soc 70:3055–3061
Nurmi JT, Tratnyek PG (2002) Environ Sci Technol 36:617–624
Sarapuu A, Helstein K, Vaik K, Schiffrin DJ, Tammeveski K (2010) Electrochim Acta 55:6376–6382
Sarapuu A, Vaik K, Schiffrin DJ, Tammeveski K (2003) J Electroanal Chem 541:23–29
Li Q, Batchelor-McAuley C, Lawrence NS, Hartshorne RS, Compton RG (2011) Chem Phys Chem 12:1255–1257
Lee Y-H, Chang K-H, Hu C-C (2013) J Power Sources 227:300–308
Frackowiak E (2007) Phys Chem Chem Phys 9:1774–1785
Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ (2009) Adv Funct Mater 19:1800–1809
Lota G, Lota K, Frackowiak E (2007) Electrochem Commun 9:1828–1832
Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nano Lett 11:2472–2477
Zhu ZH, Hatori H, Wang SB, Lu GQ (2005) J Phys Chem B 109:16744–16749
Bai Y, Rakhi RB, Chen W, Alshareef HN (2013) J Power Sources 233:313–319
Luo Z, Zhu L, Huang Y, Tang H (2013) Synth Met 175:88–96
Deakin MR, Wightman RM (1986) J Electroanal Chem 206:167–177
Deyi Z (2013) J Mater Chem A 1:7584–7591
Huang J-Q, Liu X-F, Zhang Q, Chen C-M, Zhao M-Q, Zhang S-M, Zhu W, Qian W-Z, Wei F (2013) Nano Energy 2:314–321
Acknowledgments
The authors wish to acknowledge the financial support of the Department of Employment and Learning, Northern Ireland, during the completion of this study. Assistance with access to freeze-drying facilities from Dr. Mukhtar Ahmed is graciously acknowledged. Sincere gratitude is extended to Mrs. Grace Hayes for her sound support and to Mr. William Bartolome Hayes for important motivation.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 558 kb)
Rights and permissions
About this article
Cite this article
Hayes, W.I., Joseph, P., Mughal, M.Z. et al. Production of reduced graphene oxide via hydrothermal reduction in an aqueous sulphuric acid suspension and its electrochemical behaviour. J Solid State Electrochem 19, 361–380 (2015). https://doi.org/10.1007/s10008-014-2560-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10008-014-2560-6