Skip to main content

Advertisement

Log in

Production of reduced graphene oxide via hydrothermal reduction in an aqueous sulphuric acid suspension and its electrochemical behaviour

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Widespread availability of fuel cells is being delayed due to the scarcity and high expense of precious metal catalysts, which presently provide the most efficient oxygen reduction reaction (ORR). Research has shown efficient electrocatalysis towards ORR from carbon materials offers a possible alternative to precious metal catalysts. Increasing focus is being given to the provision of graphene by the reduction of graphene oxide (GO) as a facile method for possible up-scaled production. Presented is a novel method for the production of electrocatalytic graphene-like material, involving the hydrothermal reduction of GO suspended in 0.1 M sulphuric acid (denoted as rGO H2SO4). The rGO H2SO4 sample provides a more efficient electron transfer during ORR than GO reduction in hydrazine (denoted as rGO N2H4), a commonly employed, but toxic reducing agent. The overall current observed from the rGO H2SO4 preparation is similar to that provided by rGO N2H4 during diffusion-controlled linear sweep voltammetry analysis. Oxygen reduction catalysis of the rGO H2SO4 sample is seen to be promoted by the incorporation of sulphur, along with the high level of surface defects created after GO reduction. The diffusion-dependent conditions of cyclic voltammetry analysis confirms a pseudocapacitive response from the rGO preparations. The stability of this pseudocapacitance is significant for all reduced graphene oxide (rGO) samples discussed, opening the possible dual application of both electrical power generation and power storage capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kim J, Cote LJ, Huang J (2012) Acc Chem Res 45:1356–1364

    CAS  Google Scholar 

  2. Buchsteiner A, Lerf A, Pieper J (2006) J Phys Chem B 110:22328–22338

    CAS  Google Scholar 

  3. Schniepp H, Li J, McAllister M, Sai H, Herrera-Alonso M, Adamson D, Prudhomme RK, Car R, Saville DA, Aksay IA (2006) J Phys Chem B 110:8535–8539

    CAS  Google Scholar 

  4. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Chem Mater 18:2740–2749

    Google Scholar 

  5. Hontoria-Lucas C, Lopez-Peinado AJ, Lopez-Gonzalez JD, Rojas-Cervantes ML, Martin-Aranda RM (1995) Carbon 33:1585–1592

    CAS  Google Scholar 

  6. Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M (2009) Adv Funct Mater 19:2577–2583

    CAS  Google Scholar 

  7. Sutar DS, Narayanam PK, Singh G, Botcha VD, Talwar SS, Srinivasa RS, Major SS (2012) Thin Solid Films 520:5991–5996

    CAS  Google Scholar 

  8. Park S, An SJ, Potts J, Velamakanni A, Murali S, Ruoff R (2011) Carbon 49:3019–3023

    CAS  Google Scholar 

  9. Shin H, Kim K, Benayad A, Yoon S, Park H, Jung I, Jin M, Jeong H, Kim J, Choi J, Lee Y (2009) Adv Funct Mater 19:1987–1992

    CAS  Google Scholar 

  10. Su CY, Xu YP, Zhang WJ, Zhao JW, Liu AP, Tang XH, Tsai CH, Huang YZ, Li LJ (2010) ACS Nano 4:5285–5292

    CAS  Google Scholar 

  11. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558–1565

    CAS  Google Scholar 

  12. Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Adv Mater 20:3557–3561

    CAS  Google Scholar 

  13. Si Y, Samulski ET (2008) Nano Lett 8:1679–1682

    CAS  Google Scholar 

  14. Perera SD, Mariano RG, Nijem N, Chabal Y, Ferraris JP, Balkus KJ Jr (2012) J Power Sources 215:1–10

    CAS  Google Scholar 

  15. Chua CK, Pumera M (2014) Chem Soc Rev 43:291–312

    CAS  Google Scholar 

  16. Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Langmuir 19:6050–6055

    CAS  Google Scholar 

  17. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) J Phys Chem C 112:8192–8195

    CAS  Google Scholar 

  18. Cote LJ, Cruz-Silva R, Huang JX (2009) J Am Chem Soc 131:11027–11032

    CAS  Google Scholar 

  19. Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H-B, Xiao F-S (2010) NanoToday 5:15–20

    CAS  Google Scholar 

  20. Mao S, Pu H, Chen J (2012) RSC Adv 2:2643–2662

    CAS  Google Scholar 

  21. Hassan H, Abdelsayed V, Khder A, AbouZeid K, Terner J, El-Shall M, Al-Resayes SI, El-Azhary AA (2009) J Mater Chem 19:3832–3837

    CAS  Google Scholar 

  22. Wei ZQ, Wang DB, Kim S, Kim SY, Hu YK, Yakes MK, Laracuente AR, Dai ZT, Marder SR, Berger C, King WP, de Heer WA, Sheehan PE, Riedo E (2010) Science 328:1373–1376

    CAS  Google Scholar 

  23. Zhu YW, Stoller MD, Cai WW, Velamakanni A, Piner RD, Chen D, Ruoff RS (2010) ACS Nano 4:1227–1233

    CAS  Google Scholar 

  24. Baraket M, Walton SG, Wei Z, Lock EH, Robinson JT, Sheehan P (2010) Carbon 48:3382–3390

    CAS  Google Scholar 

  25. Chen WF, Yan LF, Bangal PR (2010) Carbon 48:1146–1152

    CAS  Google Scholar 

  26. Sokolov DA, Shepperd KR, Orlando TM (2010) J Phys Chem Lett 1:2633–2636

    CAS  Google Scholar 

  27. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA, Ruoff RS (2009) Carbon 47:145–152

    CAS  Google Scholar 

  28. Yao PP, Chen PL, Jiang L, Zhao HP, Zhu HF, Zhou D, Hu WP, Han BH, Liu MH (2010) Adv Mater 22:5008–5012

    CAS  Google Scholar 

  29. Zhu W, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Carbon 48:2118–2122

    CAS  Google Scholar 

  30. McAllister M, Li J, Adamson D, Schniepp H, Abdala A, Liu J, Herrera-Alonso M, Milius DL, Car R, Prudhomme RK, Aksay IA (2007) Chem Mater 19:4396–4404

    CAS  Google Scholar 

  31. Min K, Han TH, Kim J, Jung J, Jung C, Hong SM, Koo CM (2012) J Colloid Interface Sci 383:36–42

    CAS  Google Scholar 

  32. Bosch-Navarro C, Coronado E, Martí-Gastaldo C, Sánchez-Royo JF, Gómez MG (2012) Nanoscale 4:3977–3982

    CAS  Google Scholar 

  33. Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Chem Mater 21:2950–2956

    CAS  Google Scholar 

  34. Gao W, Alemany L, Ci L, Ajayan P (2009) Nat Chem 1:403–408

    CAS  Google Scholar 

  35. Tien HN, Luan VH, Lee TK, Kong B-S, Chung JS, Kim EJ, Hur SH (2012) Chem Eng J 211–212:97–103

    Google Scholar 

  36. Lin L, Zhang S (2012) J Mater Chem 22:14385–14393

    CAS  Google Scholar 

  37. Fan L-Z, Liu J-L, Ud-Din R, Yan X, Qu X (2012) Carbon 50:3724–3730

    CAS  Google Scholar 

  38. Jiaoxing X (2013) Chemsuschem 6:493–499

    Google Scholar 

  39. Lee KR, Lee KU, Lee JW, Ahn BT, Woo SI (2010) Electrochem Commun 12:1052–1055

    CAS  Google Scholar 

  40. Huang C, Li C, Shi G (2012) Energy Environ Sci 5:8848–8868

    CAS  Google Scholar 

  41. Hummers W, Offeman R (1958) J Am Chem Soc 80:1339–1339

    CAS  Google Scholar 

  42. Kong HX (2013) Curr Opin Solid State Mater Sci 17:31–37

    CAS  Google Scholar 

  43. Eigler S, Grimm S, Hirsch A (2014) Chem Eur J 20:984–989

    CAS  Google Scholar 

  44. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Nano Lett 10:4863–4868

    CAS  Google Scholar 

  45. Yan J, Liu JP, Fan ZJ, Wei T, Zhang LJ (2012) Carbon 50:2179–2188

    CAS  Google Scholar 

  46. Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Nano Lett 7:3499–3503

    CAS  Google Scholar 

  47. Lomeda JR, Doyle CD, Kosynkin DV, Hwang W-F, Tour JM (2008) J Am Chem Soc 130:16201–16206

    CAS  Google Scholar 

  48. Gokus T, Nair RR, Bonetti A, Bohmler M, Lombardo A, Novoselov KS, Geim AK, Ferrari AC, Hartschuh A (2009) ACS Nano 3:3963–3968

    CAS  Google Scholar 

  49. Trusovas R, Ratautas K, Raciukaitis G, Barkauskas J, Stankeviciene I, Niaura G, Mazeikiene R (2013) Carbon 52:574–582

    CAS  Google Scholar 

  50. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Eur Phys J Spec Top 148:171–176

    Google Scholar 

  51. Rohrl J, Hundhausen M, Emtsev K, Seyller T, Graupner R, Ley L (2008) Appl Phys Lett 92:201918–201921

    Google Scholar 

  52. Ferrari AC (2007) Solid State Commun 143:47–57

    CAS  Google Scholar 

  53. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Pisanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Phys Rev Lett 97:187401

    CAS  Google Scholar 

  54. Boutchich M, Jaffré A, Alamarguy D, Alvarez J, Barras A, Tanizawa Y, Tero R, Okada H, Thu TV, Kleider JP, Sandhu A (2013) J Phys Conf Ser 433:012001

    Google Scholar 

  55. Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) J Phys Chem C 115:17009–17019

    CAS  Google Scholar 

  56. Fan ZJ, Wang K, Wei T, Yan J, Song LP, Shao B (2010) Carbon 48:1686–1689

    CAS  Google Scholar 

  57. Li Y, Lv X, Lu J, Li J (2010) J Phys Chem C 114:21770–21774

    CAS  Google Scholar 

  58. He D, Kou Z, Xiong Y, Cheng K, Chen X, Pan M, Mu S (2014) Carbon 66:312–319

    CAS  Google Scholar 

  59. Wang W, Wang Z, Liu Y, Li N, Wang W, Gao J (2012) Mater Res Bull 47:2245–2251

    CAS  Google Scholar 

  60. Pham VH, Cuong TV, Hur SH, Oh E, Kim EJ, Shin EW, Chung JS (2011) J Mater Chem 21:3371–3377

    CAS  Google Scholar 

  61. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Nano Lett 9:1593–1597

    CAS  Google Scholar 

  62. Lerf A, Buchsteiner A, Pieper J, Schottl S, Dekany I, Szabo T, Boehm HP (2006) J Phys Chem Solids 67:1106–1110

    CAS  Google Scholar 

  63. Liu C, Hu G, Gao H (2012) J Supercrit Fluids 63:99–104

    CAS  Google Scholar 

  64. Antolini E (2012) Appl Catal B Environ 123–124:52–68

    Google Scholar 

  65. Ban FY, Majid SR, Huang NM, Lim HN (2012) Int J Electrochem Sci 7:4345–4351

    CAS  Google Scholar 

  66. Hsieh C-T, Hsu S-M, Lin J-Y, Teng H (2011) J Phys Chem C 115:12367–12374

    CAS  Google Scholar 

  67. Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Angew Chem Int Ed 51:11496–11500

    CAS  Google Scholar 

  68. Wan S, Wang L, Xue Q (2010) Electrochem Commun 12:61–65

    CAS  Google Scholar 

  69. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Adv Mater 20:4490–4493

    CAS  Google Scholar 

  70. Guo H-L, Peng S, Kang X, Ning S-K (2013) J Mater Chem 1:2248–2255

    CAS  Google Scholar 

  71. Pham VH, Pham HD, Dang TT, Hur SH, Kim EJ, Kong BS, Kim S, Chung JS (2012) J Mater Chem 22:10530–10536

    CAS  Google Scholar 

  72. Vesel A, Mozetic M (2009) J Phys Conf Ser 162:012015

    Google Scholar 

  73. Choi CH, Park SH, Woo SI (2011) Green Chem 13:406–412

    CAS  Google Scholar 

  74. Seredych M, Tamashausky AV, Bandosz TJ (2010) Adv Funct Mater 20:1670–1679

    CAS  Google Scholar 

  75. Ellis AV, Al-deen A, Dalal H, Andersson GG (2013) J Phys Chem C 117:21312–21319

    CAS  Google Scholar 

  76. Chen W, Yan L, Bangal PR (2010) J Phys Chem C 114:19885–19890

    CAS  Google Scholar 

  77. Zhao G, Jiang L, He Y, Li J, Dong H, Wang X, Hu W (2011) Adv Mater 23:3959–3963

    CAS  Google Scholar 

  78. Liu F, Sun J, Zhu L, Meng X, Qi C, Xiao F-S (2012) J Mater Chem 22:5495–5502

    CAS  Google Scholar 

  79. Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    CAS  Google Scholar 

  80. Wu D, Zhang F, Liang H, Feng X (2012) Chem Soc Rev 41:6160–6177

    CAS  Google Scholar 

  81. Gao X, Jang J, Nagase S (2010) J Phys Chem C 114:832–842

    CAS  Google Scholar 

  82. Zalan Z, Lazar L, Fulop F (2005) Curr Org Chem 9:357–376

    CAS  Google Scholar 

  83. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, Hoboken

    Google Scholar 

  84. Yang H-H, McCreery RL (2000) J Electrochem Soc 147:3420–3428

    CAS  Google Scholar 

  85. Song C, Zhang J (2008) In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers, vol 12. Springer, Vancouver

    Google Scholar 

  86. Wu J, Yang H (2013) Acc Chem Res 46:1848–1857

    CAS  Google Scholar 

  87. Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S (2012) ACS Nano 6:205–211

    CAS  Google Scholar 

  88. Wohlgemuth S-A, White RJ, Willinger M-G, Titirici M-M, Antonietti M (2012) Green Chem 14:1515–1523

    CAS  Google Scholar 

  89. Park J-E, Jang YJ, Kim YJ, Song MS, Yoon S, Kim DH, Kim SJ (2014) Phys Chem Chem Phys 16:103–109

    CAS  Google Scholar 

  90. Seredych M, Bandosz TJ (2014) Carbon 66:227–233

    CAS  Google Scholar 

  91. Slater JC (1964) J Chem Phys 41:3199

    CAS  Google Scholar 

  92. Lu Z-J, Bao S-J, Gou Y-T, Cai C-J, Ji C-C, Xu M-W, Song J, Wang R (2013) RSC Adv 3:3990–3995

    CAS  Google Scholar 

  93. Wu J, Wang Y, Zhang D (2011) Adv Mater Res 197–198:667–671

    Google Scholar 

  94. Huang D, Zhang B, Zhang Y, Zhaan F, Xu X, Shen Y, Wang M (2013) J Mater Chem A 1:1415–1420

    CAS  Google Scholar 

  95. Xu S, Yong L, Wu P (2013) ACS Appl Mater Interfaces 5:654–662

    CAS  Google Scholar 

  96. Fu X, Liu Y, Cao X, Jin J, Liu Q, Zhang J (2013) Appl Catal B Environ 130–131:143–151

    Google Scholar 

  97. He D, Jiang Y, Lv H, Pan M, Mu S (2013) Appl Catal B Environ 132–133:379–388

    Google Scholar 

  98. Koutecky J, Levich VG (1958) Zh Fiz Khim 32:1565–1575

    CAS  Google Scholar 

  99. Koutecky J, Levich VG (1957) Dokl Akad Nauk SSSR 117:441–444

    Google Scholar 

  100. Masa J, Batchelor-McAuley C, Schuhmann W, Compton RG (2014) Nano Res 7:71–78

    CAS  Google Scholar 

  101. Yang Z, Nie H, Chen X, Chen X, Huang S (2013) J Power Sources 236:238–249

    CAS  Google Scholar 

  102. Yang S, Feng X, Wang X, Müllen K (2011) Angew Chem Int Ed 50:5339–5343

    CAS  Google Scholar 

  103. Zhou X, Yang Z, Nie H, Yao Z, Zhang L, Huang S (2011) J Power Sources 196:9970–9974

    CAS  Google Scholar 

  104. Yang Z, Zhou X, Nie H, Yao Z, Huang S (2011) ACS Appl Mater Interfaces 3:2601–2606

    CAS  Google Scholar 

  105. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    CAS  Google Scholar 

  106. You S, Luzan SM, Szabó T, Talyzin AV (2013) Carbon 52:171–180

    CAS  Google Scholar 

  107. Farghali AA, Bahgat M, El Rouby WMA, Khedr MH (2013) J Alloys Compd 555:193–200

    CAS  Google Scholar 

  108. Mishra AK, Ramaprabhu S (2011) Desalination 282:39–45

    CAS  Google Scholar 

  109. Jiang Y, Chen D, Song J, Jiao Z, Ma Q, Zhang H, Cheng L, Zhao B, Chu Y (2013) Electrochim Acta 91:173–178

    CAS  Google Scholar 

  110. Radich JG, Kamat PV (2012) ACS Catal 2:807–816

    CAS  Google Scholar 

  111. Li Y, van Zijll M, Chiang S, Pan N (2011) J Power Sources 196:6003–6006

    CAS  Google Scholar 

  112. Guin PS, Das S, Mandal PC (2008) Int J Electrochem Sci 3:1016–1028

    CAS  Google Scholar 

  113. Guin PS, Das S, Mandal PC (2010) J Phys Org Chem 23:477–482

    CAS  Google Scholar 

  114. Gill R, Stonehill HI (1952) J Chem Soc:1845–1857

  115. Furman NH, Stone KG (1948) J Am Chem Soc 70:3055–3061

    CAS  Google Scholar 

  116. Nurmi JT, Tratnyek PG (2002) Environ Sci Technol 36:617–624

    CAS  Google Scholar 

  117. Sarapuu A, Helstein K, Vaik K, Schiffrin DJ, Tammeveski K (2010) Electrochim Acta 55:6376–6382

    CAS  Google Scholar 

  118. Sarapuu A, Vaik K, Schiffrin DJ, Tammeveski K (2003) J Electroanal Chem 541:23–29

    CAS  Google Scholar 

  119. Li Q, Batchelor-McAuley C, Lawrence NS, Hartshorne RS, Compton RG (2011) Chem Phys Chem 12:1255–1257

    CAS  Google Scholar 

  120. Lee Y-H, Chang K-H, Hu C-C (2013) J Power Sources 227:300–308

    CAS  Google Scholar 

  121. Frackowiak E (2007) Phys Chem Chem Phys 9:1774–1785

    CAS  Google Scholar 

  122. Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ (2009) Adv Funct Mater 19:1800–1809

    CAS  Google Scholar 

  123. Lota G, Lota K, Frackowiak E (2007) Electrochem Commun 9:1828–1832

    CAS  Google Scholar 

  124. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nano Lett 11:2472–2477

    CAS  Google Scholar 

  125. Zhu ZH, Hatori H, Wang SB, Lu GQ (2005) J Phys Chem B 109:16744–16749

    CAS  Google Scholar 

  126. Bai Y, Rakhi RB, Chen W, Alshareef HN (2013) J Power Sources 233:313–319

    CAS  Google Scholar 

  127. Luo Z, Zhu L, Huang Y, Tang H (2013) Synth Met 175:88–96

    CAS  Google Scholar 

  128. Deakin MR, Wightman RM (1986) J Electroanal Chem 206:167–177

    CAS  Google Scholar 

  129. Deyi Z (2013) J Mater Chem A 1:7584–7591

    Google Scholar 

  130. Huang J-Q, Liu X-F, Zhang Q, Chen C-M, Zhao M-Q, Zhang S-M, Zhu W, Qian W-Z, Wei F (2013) Nano Energy 2:314–321

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the Department of Employment and Learning, Northern Ireland, during the completion of this study. Assistance with access to freeze-drying facilities from Dr. Mukhtar Ahmed is graciously acknowledged. Sincere gratitude is extended to Mrs. Grace Hayes for her sound support and to Mr. William Bartolome Hayes for important motivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Ignatius Hayes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 558 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayes, W.I., Joseph, P., Mughal, M.Z. et al. Production of reduced graphene oxide via hydrothermal reduction in an aqueous sulphuric acid suspension and its electrochemical behaviour. J Solid State Electrochem 19, 361–380 (2015). https://doi.org/10.1007/s10008-014-2560-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2560-6

Keywords

Navigation