Skip to main content
Log in

A simple fabrication of Ag-nanowires@TiO2 core-shell nanostructures for the construction of mediator-free biosensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

One-dimensional Ag-nanowires@TiO2 core-shell nanostructures (ANTNs) have been synthesized via a simple solvent thermal method and employed to immobilize hemoglobin (Hb) in order to fabricate a mediator-free biosensor. Immobilized Hb on ANTNs protected by nafion film exhibited good bioactivity, stability, and remarkable electron transfer rate because of its unique core-shell structure and compose. The morphology and structure of the ANTNs were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Electrochemical measurements revealed that the ANTNs were an immobilization support with biocompatibility for enzymes, affording good enzyme stability and bioactivity. Due to the unique Ag-nanowires@TiO2 core-shell nanostructures, the resulting biosensor displayed good performance for the detection of H2O2, with both a low detection limit of 1.3 μM and a wide linear range of 4–152 μM, as well as a fast response and excellent long-term stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cui Y, Lieber C (2001) Science 291:851–853

    Article  CAS  Google Scholar 

  2. Du JM, Zhang JL, Liu ZM, Han BX, Jiang T, Huang Y (2006) Langmuir 22:1307–1312

    Article  CAS  Google Scholar 

  3. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  4. Zhu YH, Cao HM, Tang LH, Yang XL, Li CZ (2009) Electrochim Acta 54:2823–2827

    Article  CAS  Google Scholar 

  5. Yan K, Wang R, Zhang JD (2014) Biosens Bioelectron 53:301–304

    Article  CAS  Google Scholar 

  6. Bao SJ, Li CM, Zang JF, Cui XQ, Qiao Y, Guo J (2008) Adv Funct Mater 18:591–599

    Article  CAS  Google Scholar 

  7. Kim JB, Grate JW, Wang P (2006) Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  8. Wang YF, Wu MY, Zhang WF (2008) Electrochim Acta 53:7863–7868

    Article  CAS  Google Scholar 

  9. Zheng W, Zheng YF, Jin KW, Wang N (2008) Talanta 74:1414–1419

    Article  CAS  Google Scholar 

  10. Liu S, Chen A (2005) Langmuir 21:8409–8413

    Article  CAS  Google Scholar 

  11. Zhang L, Zhang Q, Lu XB, Li JH (2007) Biosens Bioelectron 23:102–106

    Article  Google Scholar 

  12. Xie Q, Zhao YY, Chen X, Liu HM, Evans DG, Yang WS (2011) Biomaterials 32:6588–6594

    Article  CAS  Google Scholar 

  13. Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A, Laub D (2004) J Am Chem Soc 126:3868–3879

    Article  CAS  Google Scholar 

  14. Kamat PV, Hirakawa T (2005) J Am Chem Soc 127:3928–3934

    Article  Google Scholar 

  15. Sun JY, Huang KJ, Zhao SF, Fan Y, Wu ZW (2011) Bioelectrochem 82:125–130

    Article  CAS  Google Scholar 

  16. Huang KJ, Li J, Wu YY, Liu YM (2013) Bioelectrochem 90:18–23

    Article  CAS  Google Scholar 

  17. Guo CX, Hu FP, Li CM, Shen PK (2008) Biosens Bioelectron 24:819–824

    Article  CAS  Google Scholar 

  18. Wang Y, Ma XL, Wen Y, Xing YY, Zhang ZR (2010) Biosens Bioelectron 25:2442–2446

    Article  CAS  Google Scholar 

  19. Slamet XX, Nasution HW, Purnama E, Kosela S, Gunlazuardi J (2005) Catal Commun 6:313–319

    Article  CAS  Google Scholar 

  20. Rupa AV, Manikandan D, Divakar D, Skvakumar T (2007) J Hazard Mater 147:906–913

    Article  CAS  Google Scholar 

  21. Cao YW, Jin RC, Mirkin CA (2001) J Am Chem Soc 123:7961–7962

    Article  CAS  Google Scholar 

  22. Yun HJ, Lee H, Kim ND, Yi J (2009) Electrochem Commun 11:363–366

    Article  CAS  Google Scholar 

  23. Sun H, Choy TS, Zhu DR, Yam WC, Fung YS (2009) Biosens Bioelectron 24:1405–1410

    Article  CAS  Google Scholar 

  24. Khan MM, Ansari SA, Amal MI, Lee J, Cho MH (2013) Nanoscale 5:4427–4435

    Article  CAS  Google Scholar 

  25. Xiao J, Xie Y, Tang R, Chen M, Tian X (2001) Adv Mater 13:1887–1891

    Article  CAS  Google Scholar 

  26. Cui YM, Liu L, Li B, Zhou XF, Xu NP (2010) J Phys Chem C 114:2434–2439

    Article  CAS  Google Scholar 

  27. Lu XB, Zhang HJ, Ni YW, Zhang Q, Chen JP (2008) Biosens Bioelectron 24:93–98

    Article  CAS  Google Scholar 

  28. Feng XM, Cheng YF, Ye C, Ye JS, Peng JY, Hu JQ (2012) Mater Lett 79:205–208

    Article  CAS  Google Scholar 

  29. Laviron E (1979) J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  30. Wu FH, Xu JJ, Tian Y, Hu ZC, Wang LW, Xian YZ, Jin LT (2008) Biosens Bioelectron 24:198–203

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Science Foundation of China (51272147), the Academic Backbone Cultivation Program of Shaanxi University of Science & Technology (XSGP201203), and the Graduate Innovation Found of Shaanxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Dong, X., Duan, C. et al. A simple fabrication of Ag-nanowires@TiO2 core-shell nanostructures for the construction of mediator-free biosensor. J Solid State Electrochem 19, 543–548 (2015). https://doi.org/10.1007/s10008-014-2550-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2550-8

Keywords

Navigation