Skip to main content
Log in

Progress on the development of uniform distributed Pd electroless based catalysts on MEA for PEMFC application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Envisaging the scale-up production of fuel cell electrodes, it was established an electrode manufacturing method that enables a uniform distribution of Pd-based catalyst over the MEA, ensuring simultaneously a low catalyst loading. The new procedure relies on the direct immobilization of the catalyst on the gas diffusion substrate by the electroless deposition after substrate activation by the electrodeposition of metal nucleus of Pd using the galvanostatic mode. The effect of the novel method on the catalyst distribution uniformity, morphology, and electrocatalytic activity towards the oxygen reduction reaction (ORR) in 0.1 M HClO4 solution is compared to samples prepared by the conventional Sn/Pd sensitization—activation route. The performance of the PEMFC containing the same Pd load (0.09 mg cm−2) reveals to be slightly higher on depositing the Pd nucleus by the galvanostatic electrodeposition than by the conventional sensitization/activation method. The new method opens up new approaches to extend the electroless deposition to the preparation of a wide range of alloy catalysts for the cathode and anode sides of PEMFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wilson M, Gottesfeld S (1992) J Appl Electrochem 22:1–7

    Article  CAS  Google Scholar 

  2. Jhong H, Brushett FR, Kenis PJ (2013) Adv Energy Mater 3:589–599

    Article  CAS  Google Scholar 

  3. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Nature 389:827–829

    Article  CAS  Google Scholar 

  4. Larson C, Smith J (2011) Trans Inst Met Finish 89:333–341

    Article  CAS  Google Scholar 

  5. Podestá J, Piatti R (1997) Int J Hydrog Energy 22:753–758

    Article  Google Scholar 

  6. Bonifácio RN, Neto AO, Linardi M (2013) Int J Electrochem Sci 8:5621–5634

    Google Scholar 

  7. Noto VD, Negro E, Polizzi S, Riello P, Atanassov P (2012) Appl Catal B Environ 111:185–199

    Article  Google Scholar 

  8. Alvarez GF, Mamlouk M, Kumar SM, Scott K (2011) J Appl Electrochem 41:925–937

    Article  CAS  Google Scholar 

  9. Singh RK, Rahul R, Neergat M (2013) Phys Chem Chem Phys 15:13044–13051

    Article  CAS  Google Scholar 

  10. Wells P, Crabb E, King C, Wiltshire R, Billsborraw B, Thomprett D, Russel A (2009) Phys Chem Chem Phys 11:5773–5781

    Article  CAS  Google Scholar 

  11. Wua K, Mao X, Liang Y, Chen Y, Tang Y, Zhou Y, Lin J, Mab C, Lu T (2012) J Power Sources 219:258–262

    Article  Google Scholar 

  12. Oliveira MC (2008) Electrochim Acta 53:8138–8143

    Article  CAS  Google Scholar 

  13. Yang G, Chen Y, Zhou Y, Tang Y, Lu T (2010) Electrochem Commun 12:492–495

    Article  CAS  Google Scholar 

  14. Schlesinger M, Paunovic M (2000) Modern Electroplating, 4th Russian Edition. Wiley, New York

    Google Scholar 

  15. Rego R, Oliveira MC, Alcaide F, Álvarez G (2012) Inter J Hydrog Energy 37:7192–7199

    Article  CAS  Google Scholar 

  16. Rego R, Oliveira MC, Velázquez A, Cabot P (2010) Electrochem Commun 12:745–748

    Article  CAS  Google Scholar 

  17. Rego R, Ferraria AM, Rego AM, Oliveira MC (2013) Electrochim Acta 87:73–81

    Article  CAS  Google Scholar 

  18. Dai H, Li H, Wang F (2006) Appl Surf Sci 253:2474–2480

    Article  CAS  Google Scholar 

  19. Wang Y, Bian C, Jing X (2013) Appl Surf Sci 271:303–310

    Article  CAS  Google Scholar 

  20. Liu ZC, He Q, Tan JX, Xiao PF, He NY, Lu ZH (2003) Chin J Chem 21:1–3

    Google Scholar 

  21. Salomé S, Rego R, Querejeta A, Alcaide F, Oliveira MC (2013) Electrochim Acta 106:516–524

    Article  Google Scholar 

  22. Correia AN, Mascaro LH, Machado SA, Avaca LA (1997) Electrochim Acta 42:493–495

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) and COMPETE (projects PTDC/QUI-QUI/110855/2009 and UI 686 - 2011-2012,PEst-C/QUI/UI0616/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cristina Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salomé, S., Rego, R., Querejeta, A. et al. Progress on the development of uniform distributed Pd electroless based catalysts on MEA for PEMFC application. J Solid State Electrochem 18, 2721–2729 (2014). https://doi.org/10.1007/s10008-014-2517-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2517-9

Keywords

Navigation