Skip to main content

Advertisement

Log in

Effects of water-based gel electrolyte on the charge recombination and performance of dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new water-based solution of ion-conductive polymeric gel electrolyte composed of polyethylene glycol and polyvinylpyrrolidone as gel-forming substances, I/I3 as reversible redox couple, and various ratios of acetonitrile/water solvents was prepared and used in the fabrication of dye-sensitized solar cells. The effects of water on the electrochemical behavior of the prepared electrolyte solutions were examined by the cyclic voltammetry and electrochemical impedance spectroscopy techniques. Electrochemical impedance spectroscopy was employed to quantify the charge-transfer resistance and the electron lifetime at the TiO2 conduction band. The characteristic peak shifted to a lower frequency in the Bode phase plot, which is an indication of a longer electron lifetime for the cell containing more water content. Photovoltaic performance of the cells prepared by the new water-based gel electrolyte was studied. Changes in the current density–voltage (JV) characteristics can be explained based on the effect of water on the energetics and kinetics of charge transport and charge recombination in the dye-sensitized solar cells (DSSCs). It was observed that the increase in open-circuit voltage (V oc) and fill factor and decrease in J SC were noticeable for cells containing water-based gel electrolyte. It was indicated that the charge recombination between injected electrons and electron acceptors (polyiodide) in the redox electrolyte was remarkably inhibited by the increase of water. The photovoltaic performance stability of the DSSC containing gel electrolyte solution including 50 wt% of water was examined, and it was shown that it is more stable than conventional cells considerably for 168 h. Energy conversion efficiency of 2.30 % was achieved, under illumination with a simulated solar light of 100 mW cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang YS, Kim HD, Hyun Ryu J, Kim KK, Park SS, Soon Ahn K, Kim JH (2011) Effects of anchoring groups in multi-anchoring organic dyes with thiophene bridge for dye-sensitized solar cells. Synth Met 161:850–855

    Article  CAS  Google Scholar 

  2. WonSeok BC, SungHoon A, Harim J, Yong Gun S, Jong Hak K (2012) Rubbery copolymer electrolytes containing polymerized ionic liquid for dye-sensitized solar cells. J Solid State Electrochem 16:3037–3043

    Google Scholar 

  3. Argazzi R, Larramona G, Contado C, Bignozzi CA (2004) Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4, 4', 4"-tricarboxy-2, 2':6', 2"-terpyridine and cyanide ligands. J PhotochemPhotobiol A Chem 164:15–21

    Article  CAS  Google Scholar 

  4. Laskova B, Zukalova M, Kavan L, Chou A, Liska P, Wei Z, Bin L, Kubat P, Ghadiri E, Moser JE, Grätzel M (2012) Voltage enhancement in dye-sensitized solar cell using (001)-oriented anatase TiO2 nanosheets. J Solid State Electrochem 16:2993–3001

    CAS  Google Scholar 

  5. Martens T, Munters T, Goris L, Schouteden K, Lutsen L, Vanderzande D, Geens W, Poortmans J (2004) Nanostructured organic pn junctions towards 3D photovoltaics. ApplPhysA 79:27–30

    CAS  Google Scholar 

  6. Tan W, Chen J, Zhou X, Zhang J, Lin Y, Li X, Xiao X (2009) Preparation of nanocrystalline TiO2 thin Film at low temperature and its application in dye-sensitized solar cell. J Solid State Electrochem 13:651–656

    CAS  Google Scholar 

  7. Heimer TA, Heilweil EJ, Bignozzi CA, Meyer GJ (2000) Electron injection, recombination, and halide oxidation dynamics at dye-sensitized metal oxide interfaces. J PhysChemA 104:4256–4262

    CAS  Google Scholar 

  8. Fattori A, Peter LM, Mcall KL, Robertson N, Marken F (2010) Adsorption and redox chemistry of cis-RuLL'(SCN)(2) with L=4,4'-dicarboxylic acid-2,2'-bipyridine and L'=4,4'-dinonyl-2,2'-bipyridine (Z907) at FTO and TiO2 electrode surfaces. J Solid State Electrochem 14:1929–1936

    CAS  Google Scholar 

  9. Kim C, Soo Kim K, Kim HY, Han YS (2008) Modification of a TiO2 photoanode by using Cr-doped TiO2 with an influence on the photovoltaic efficiency of a dye-sensitized solar cell. J Mater Chem 18:5809–5814

    Article  CAS  Google Scholar 

  10. Xiang W, Huang F, Cheng Y, Bach U, Spiccia L (2013) Aqueous dye-sensitized solar cell electrolytes based on the cobalt(II)/(III) tris(bipyridine) redox couple. Energy EnvironSci 6:121–127

    Article  CAS  Google Scholar 

  11. Law CH, Pathirana SC, Li X, Anderson AY, Barnes PR, Listorti A, Ghaddar TH, O’Regan BC (2010) Water-based electrolytes for dye-sensitized solar cells. Adv Mater 22:4505–4509

    Article  CAS  Google Scholar 

  12. Daeneke T, Uemura Y, Duffy NW, Mozer AJ, Koumura N, Bach U, Spiccia L (2012) Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide–ferrocyanide redox couple. Adv Mater 24:1222–1225

    Article  CAS  Google Scholar 

  13. Zhu K, Jang S, Arthur J, Frank AJ (2012) Effects of water intrusion on the charge-carrier dynamics, performance, and stability of dye-sensitized solar cells. Energy Environ Sci 5:9492–9495

    Article  CAS  Google Scholar 

  14. Liu Y, Hagfeldt A, Xiao XR, Lindquist SE (1998) Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Sol Energy Mater Sol Cells 55:267–281

    Article  CAS  Google Scholar 

  15. Jung YS, Yoo B, Lim MK, Lee SY, Kim KJ (2009) Effect of Triton X-100 in water-added electrolytes on the performance of dye-sensitized solar cells. ElectrochimActa 54:6286–6291

    Article  CAS  Google Scholar 

  16. Enright B, Redmond G, Fitzmaurice D (1994) Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in mixed solvent systems. J PhysChem 98:6195–6200

    CAS  Google Scholar 

  17. Mikoshiba S, Murai S, Sumino H, Kabo T, Kosigi D, Hayase S (2005) Ionic liquid type dye-sensitized solar cells: increases in photovoltaic performances by adding a small amount of water. CurrApplPhys 5:152–158

    Google Scholar 

  18. Zhao H, Yin X, Li H, Lin Y, Weng YX (2007) Explanation of effect of added water on dye-sensitized nanocrystalline TiO2 solar cell: correlation between performance and carrier relaxation kinetics. Chin PhysLett 24:3272–3275

    CAS  Google Scholar 

  19. Asghar MI, Miettunen K, Halme J, Vahermaa P, Toivola M, Aitola K, Lund P (2010) Review of stability for advanced dye solar cells. EnergyEnvironSci 3:418–426

    CAS  Google Scholar 

  20. Miettunen K, Halme J, Lund P (2013) Metallic and plastic dye solar cells. WIREs Energy Environ 2:104–120

    Article  CAS  Google Scholar 

  21. Chen ZG, Li FY, Yang H, Yi T, Huang CH (2007) A thermo stable and long-term-stable ionic-liquid-based gel electrolyte for efficient dye-sensitized solar cells. ChemPhys 8:1293–1297

    Article  CAS  Google Scholar 

  22. Jensen OW, Armel V, Forsyth M, MacFarlane DR (2010) In situ photopolymerization of a gel ionic liquid electrolyte in the presence of iodine and its use in dye sensitized solar cells. Macromol Rapid Commun 31:479–483

    Article  Google Scholar 

  23. Lan Z, Wu J, Wang D, Hao S, Lin J, Huang Y (2006) Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly(acrylonitrile-co-styrene)/NaI+I2. Sol Energy 80:1483–1488

    Article  CAS  Google Scholar 

  24. Kang MS, Ahn KS, Lee JW (2008) Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes. J Power Sources 180:896–901

    Article  CAS  Google Scholar 

  25. Xiang W, Fang Y, Lin Y, Fang S (2011) Polymer-metal complex as gel electrolyte for quasi-solid-state dye-sensitized solar cells. ElectrochimActa 56:1605–1610

    Article  CAS  Google Scholar 

  26. Li MT, Yang L, Fang S, Dong S (2011) Novel polymeric ionic liquid membranes as solid polymer electrolytes with high ionic conductivity at moderate temperature. J MembrBiol 366:245–250

    Article  CAS  Google Scholar 

  27. Anandan S, Pitchumani S, Muthuraaman B, Maruthamuthu P (2006) Hetero poly acid-impregnated PVDF as a solid polymer electrolyte for dye-sensitized solar cells. Sol Energy Mater Sol Cells 90:1715–1720

    Article  CAS  Google Scholar 

  28. Brosnan D, Ghosh R, Lopez R (2012) Influence of ionic pretreatment on the performance of solid electrolyte dye-sensitized solar cells. Sol Energy 86:2312–2317

    Article  CAS  Google Scholar 

  29. Li P, Zhang Y, Fa W, Zhang Y, Baojun Huang B (2011) Synthesis of a grafted cellulose gel electrolyte in an ionic liquid ([Bmim]I) for dye-sensitized solar cells. CarbohydrPolym 86:1216–1220

    CAS  Google Scholar 

  30. Chen J, Xia J, Fan K, Peng T (2011) A novel CuI-based iodine-free gel electrolyte for dye-sensitized solar cells. ElectrochimActa 56:5554–5560

    Article  CAS  Google Scholar 

  31. Yoon J, Kang DK, Won J, Park JY, Kang YS (2012) Dye-sensitized solar cells using ion-gel electrolytes for long-term stability. J Power Sources 201:395–401

    Article  CAS  Google Scholar 

  32. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly (ethylene oxide). Polym 14:589–589. doi:10.1016/0032-3861%2873%2990146-8

    Article  CAS  Google Scholar 

  33. Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J MembranceSci 454:200–211

    Article  Google Scholar 

  34. Gray FM (1991) In: Gray FM (ed) Solid polymer electrolytes: fundamentals and technological applications. VCH, New York

    Google Scholar 

  35. Zahurak SM, Kaplan ML, Reitman EA, Murray DW, Cava RJ (1998) Phase relationships and conductivity of the polymer electrolytes poly(ethylene oxide)/lithium tetrafluoroborate and poly(ethylene oxide)/lithium trifluoromethanesulfonate. Macromolecules 21:654–660

    Article  Google Scholar 

  36. Vallee A, Besner S, Prud’homme J (1992) Comparative study of poly(ethylene oxide) electrolytes made with LiN9CF3SO3 and LiClO4: thermal properties and conductivity behavior. ElectrochimActa 37:1579–1583

    Article  CAS  Google Scholar 

  37. Rand DA (1979) Battery system for electric vehicles: state of art review. J Power Sources 4:101–143

    Article  CAS  Google Scholar 

  38. Wu J, Li P, Hao S, Yang H, Lan Z (2007) A polyblend electrolyte (PVP/PEG+KI+I2) for dye-sensitized nanocrystalline TiO2 solar cells. ElectrochimActa 52:5334–5338

    Article  CAS  Google Scholar 

  39. Mozaffari S, Dehghan M, Borhanizarandi M, Nateghi MR (2013) Effect of single-wall carbon nanotubes on the properties of polymeric gel electrolyte dye-sensitized solar cells. J Solid State Electrochem 18:655–663

    Google Scholar 

  40. Wang Y (2009) Recent research progress on polymer electrolytes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 93:1167–1175

    Article  CAS  Google Scholar 

  41. Murai S, Mikoshiba S, Sumino H, Hayase S (2002) Quasi-solid dye-sensitized solar cells containing chemically cross-linked gel: how to make gels with a small amount of gelator. J PhotochemPhotobiolA 148:33–39

    CAS  Google Scholar 

  42. Yang Y, Zhou CH, Xu S, Zhang J, Wu SJ, Hu H, Chen BL, Tai QD, Sun ZH, Liu W, Zhao XZ (2009) Optimization of a quasi-solid-state dye-sensitized solar cell employing a nanocrystal–polymer composite electrolyte modified with water and ethanol. Nanotechnology. doi:10.1088/0957-4484/20/10/105204

    Google Scholar 

  43. Ravindran D, Vickraman P (2012) XRD, Conductivity studies on PVA-PEG blend based Mg2+ion conducting polymer electrolytes. IJSEA 1:72–74

    Article  Google Scholar 

  44. Muthuraaman B, Will G, Wang H, Moonie P, Bell J (2012) Increased charge transfer of Poly (ethylene oxide) based electrolyte by addition of small molecule and its application in dye-sensitized solar cells. ElectrochimActa 87:526–531

    Article  Google Scholar 

  45. Tang Z, Wu J, Li Q, Lan Z, Fan L, Lin J, Huang M (2010) The preparation of poly(glycidyl acrylate)-polypyrrole gel-electrolyte and its application in dye-sensitized solar cells. ElectrochimActa 55:4883–4888

    Article  CAS  Google Scholar 

  46. Yue G, Wu J, Xiao Y, Lin J, Huang M (2012) Low cost poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/carbon black counter electrode for dye-sensitized solar cells. ElectrochimActa 67:113–118

    Article  CAS  Google Scholar 

  47. Wu J, Li Q, Fan L, Lan Z, Li P, Lin J, Hao S (2008) High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. J Power Sources 181:172–176

    Article  CAS  Google Scholar 

  48. Li Q, Wu J, Tang Q, Lan Z, Li P, Lin J, Fan L (2008) Application of microporous polyaniline counter electrode for dye-sensitized solar cells. ElectrochemCommun 10:1299–1302

    CAS  Google Scholar 

  49. Benedetti J, Corrêa A, Carmello M, Luiz CP, Almeida L, Goncalves AD, Nogueira AF (2012) Cross-linked gel polymer electrolyte containing multi-wall carbon nanotubes for application in dye-sensitized solar cells. J Power Sources 208:263–270

    Article  CAS  Google Scholar 

  50. Benedetti JE, Goncalves AD, Formiga A, Paoli M, Li X, Durrant JR, Nogueira AF (2010) A polymer gel electrolyte composed of a poly(ethylene oxide) copolymer and the influence of its composition on the dynamics and performance of dye-sensitized solar cells. J Power Sources 195:1246–1255

    Article  CAS  Google Scholar 

  51. Jerman I, Jovanovski V, Vuk AS, Hocevar SB, Gaberscek M, Jesih A, Orel B (2008) Ionic conductivity, infrared and Raman spectroscopic studies of 1-methyl-3-propylimidazolium iodide ionic liquid with added iodine. ElectrochimActa 53:2281–2288

    Article  CAS  Google Scholar 

  52. Andrews L, Prochaska ES, Loewenschuss A (1980) Resonance Raman and ultraviolet absorption spectra of the triiodide ion produced by alkali iodide-iodine argon matrix reactions. InorgChem 19:463–465

    CAS  Google Scholar 

  53. Tadayyoni MA, Gao P, Weaver MJ (1986) Application of surface-enhanced Raman spectroscopy to mechanistic electrochemistry: oxidation of iodide at gold electrode. J ElectroanalChem 198:125–136

    Article  CAS  Google Scholar 

  54. Kubo W, Murakoshi K, Kitamura K, Yoshida S, Haruki M, Hanabusa H, Shirai H, Wada Y, Yanagida S (2001) Quasi solid state dye sensitized TiO2 solar cells: effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine. J PhysChem B 105:12809–12815

    CAS  Google Scholar 

  55. Wu J, Lan Z, Wang D, Hao S, Lin J, Wei Y, Sato T (2006) Quasi-solid state dye-sensitized solar cells-based gel polymer electrolytes with poly (acrylamide).poly (ethylene glycol) composite. J PhotochemPhotobiol A Chem 181:333–337

    Article  CAS  Google Scholar 

  56. Soo Lee H, Hwan Han C, Moon Sung Y, Jin Kim K (2011) Gel electrolyte based on UV-cured polyurethane for dye-sensitized solar cells. CurrApplPhys 11:158–162

    Google Scholar 

  57. Park SJ, Kichoen Y, Kim JY, Lee DK, Kim BS, Kim H, Kim JH, Cho J, Ko MJ (2013) Water-based thixotropic polymer gel electrolyte for dye-sensitized solar cells. J Am ChemSoc 7:4050–4056

    CAS  Google Scholar 

  58. Liu Y, Hagfeldt A, Xiao XR, Lindquist SE (1998) Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Sol Energy Mater Sol Cells 55:267–281

    Article  CAS  Google Scholar 

  59. Boschloo G, Gibson EA, Hagfeldt A (2011) Photomodulated voltammetry of iodide/triiodide redox electrolytes and its relevance to dye-sensitized solar cells. J PhysChemLett 2:3016–3020

    CAS  Google Scholar 

  60. Mikoshiba S, Murai S, Sumino H, Kado T, Kosugi D, Hayase S (2005) Ionic liquid type dye-sensitized solar cells: increases in photovoltaic performances by adding a small amount of water. CurrApplPhys 5:152–158

    Google Scholar 

  61. Dadgostar S, Tajabadi F, Taghavinia N (2012) Mesoporous submicrometer TiO2 hollow spheres as scatterers in dye-sensitized solar cells. ACS Appl Mater Interfaces 4:2964–2968

    Article  CAS  Google Scholar 

  62. Lim SJ, Kang YS, Won Kim D (2011) Dye-sensitized solar cells with quasi-solid-state cross-linked polymer electrolytes containing aluminum oxide. ElectrochemCommun 56:2031–2035

    CAS  Google Scholar 

  63. Fan K, Peng T, Chai B, Chen J, Dai K (2010) Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells. ElectrochimActa 55:5239–5244

    Article  CAS  Google Scholar 

  64. Boonsin R, Sudchanham J, Panusophon N, Heng PS, Kung CS, Pakawatpanurut P (2012) Dye-sensitized solar cell with poly(acrylic acid-co-acrylonitrile)-based gel polymer electrolyte. Mater ChemPhys 132:993–998

    CAS  Google Scholar 

  65. Bisquert J, Zaban A, Greenshtein M, Mora Seró I (2004) Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J Am ChemSoc 126:13550–13559

    Article  CAS  Google Scholar 

  66. Fabregat Santiago F, GarcíaCañadas J, Palomares E, Clifford JN, Haque SA, Durrant JR, Garcia Belmonte G, Bisquert J (2004) The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings. J ApplPhys 96:6903–6907

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Reza Nateghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozaffari, S., Nateghi, M.R. & Borhanizarandi, M. Effects of water-based gel electrolyte on the charge recombination and performance of dye-sensitized solar cells. J Solid State Electrochem 18, 2589–2598 (2014). https://doi.org/10.1007/s10008-014-2508-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2508-x

Keywords

Navigation