Skip to main content
Log in

Preparation of Pd/MgO-reduced graphene oxide hybrid catalyst and enhanced activity for methanol electrooxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Magnesium oxide modified reduced graphene oxide supported Pd nanocatalyst (Pd/MgO-RGO) was facilely prepared by a chemical approach. The as-prepared material was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction. The electrocatalytic behavior of Pd/MgO-RGO for methanol oxidation was studied using cyclic voltammetric and chronoamperometric methods. The results indicated that Pd/MgO-RGO nanocatalyst exhibits higher electrocatalytic activity and better stability than Pd/RGO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen CY, Yang P (2003) J Power Sources 123:37–42

    Article  CAS  Google Scholar 

  2. Knights SD, Colbow KM, Pierre JS, Wilkinson DP (2004) J Power Sources 127:127–134

    Article  CAS  Google Scholar 

  3. Sundmacher K, Schultz T, Zhou S, Scott K, Ginkel M, Gilles ED (2001) Chem Eng Sci 56:333–341

    Article  CAS  Google Scholar 

  4. Peng X, Chen J, Misewich JA, Wong SS (2009) Chem Soc Rev 38:1076–1098

    Article  CAS  Google Scholar 

  5. Cui G, Song S, Shen PK, Kowal A, Bianchini C (2009) J Phys Chem C 113:15639–15642

    Article  CAS  Google Scholar 

  6. Xu CW, Wang H, Shen PK, Jiang SP (2007) Adv Mate 19:4256–4259

    Article  CAS  Google Scholar 

  7. Lee E, Park I, Manthiram A (2010) J Phys Chem C 114:10634–10640

    Article  CAS  Google Scholar 

  8. Bianchini C, Shen PK (2009) Chem Rev 109:4183–4206

    Article  CAS  Google Scholar 

  9. Antolini E (2007) J Power Sources 170:1–12

    Article  CAS  Google Scholar 

  10. Cui CH, Li HH, Yu SH (2011) Chem Sci 2:1611–1614

    Article  CAS  Google Scholar 

  11. Sun ZP, Zhang XG, Liang YY, Li HL (2009) Electrochem Commun 11:557–561

    Article  CAS  Google Scholar 

  12. Xu C, Cheng L, Shen P, Liu Y (2007) Electrochem Commun 9:997–1001

    Article  CAS  Google Scholar 

  13. Zhao Y, Yang X, Tian J, Wang F, Zhan L (2010) Int J Hydrogen Energy 35:3249–3257

    Article  CAS  Google Scholar 

  14. Nguyen VL, Tong DH, Toru A, Michitaka O, Masayuki N (2011) Int J Hydrogen Energy 36:8478–91

    Article  CAS  Google Scholar 

  15. Dong L, Sanganna Gari RR, Li Z, Craig MM, Hou S (2010) Carbon 48:781–7

    Article  CAS  Google Scholar 

  16. Liu Z, Zhang X (2009) Electrochem Commun 11:1667–70

    Article  CAS  Google Scholar 

  17. Amin RS, Abdel Hameed RM, El-Khatib KM, Elsayed Youssef M, Elzatahry AA (2012) Electrochem Acta 59:499–508

    Article  CAS  Google Scholar 

  18. Xu C, Shen P, Liu Y (2007) J Power Sources 164:527–31

    Article  CAS  Google Scholar 

  19. Xu C, Tian Z, Shen P, Jiang SP (2008) Electrochimi Acta 53:2610–8

    Article  CAS  Google Scholar 

  20. Grisel RJH, Weststrate CJ, Goossens A, Craje MWJ, van der Kraan AM, Nieuwenhuys BE (2002) Catal Today 72:123–132

    Article  CAS  Google Scholar 

  21. Xu CW, Shen PK, Ji XH, ZL L (2005) Electrochem Commun 7:1305–1308

    Article  CAS  Google Scholar 

  22. Mahendiran C, Maiyalagan T, Scott K, Gedanken A (2011) Mater Chem Phys 128:341–347

    CAS  Google Scholar 

  23. Rao CNR, Sood AK, Voggu R, Subrahmanyam KS (2010) Int J Mod Phys B 25:427–451

    Google Scholar 

  24. Li D, Muller MB, Gil Je S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101–5

    Article  CAS  Google Scholar 

  25. Park S, An J, Piner RD, Jung I, Yang D, Velamakanni A, Nguyen ST, Ruoff RS (2008) Chem Mater 20:6592–4

    Article  CAS  Google Scholar 

  26. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Adv Mater 20:4490–3

    Article  CAS  Google Scholar 

  27. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  28. Trasatti S, Petri OA (1991) Pure Аppl Chem 63:771–794

    Google Scholar 

  29. Cuesta A, Kibler LA, Kolb DM (1999) J Electroanal Chem 466:165–168

    Article  CAS  Google Scholar 

  30. Fang LL, Tao Q, Li KF, Liao LW, Chen D, Chen YX (2010) J Electroanal Chem 23:543–548

    CAS  Google Scholar 

  31. Zhao GY, Xu CL, Guo DJ, Li H, Li HL (2006) J Power Sources 162:492–496

    Article  CAS  Google Scholar 

  32. Liu R, Zhou HH, Liu J, Yao Y, Fu CP, Huang ZY, Kuang YF (2013) Electrochem Commun 26:63–66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No.5107106, No.21271069, J1103312, J1210040) and Science Technology Project of Hunan Province, China (Grant No. 2013GK3015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haihui Zhou or Yafei Kuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, D., Liu, R., Xie, C. et al. Preparation of Pd/MgO-reduced graphene oxide hybrid catalyst and enhanced activity for methanol electrooxidation. J Solid State Electrochem 18, 2549–2553 (2014). https://doi.org/10.1007/s10008-014-2504-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2504-1

Keywords

Navigation