Skip to main content

Electrochemical behavior of silver thin films interfaced with yttria-stabilized zirconia

Abstract

Thin silver films (100–800 nm) were deposited by physical vapor deposition (PVD) on yttria-stabilized zirconia solid electrolyte. The electric percolation as a function of the film thickness was studied during deposition and annealing using a two-electrode in-situ resistance measurement technique. Electrical percolation was achieved in as-deposited films greater than 5.4 ± 0.4 nm; however, thermal treatment (550 °C in air) resulted in film dewetting for Ag films as thick as 500 nm and formation of electronically isolated Ag nanoparticles, as was confirmed by SEM and XPS. In thermally treated samples, stable electronic conductivity associated with a continuous percolated network was only observed in samples greater than 600 nm in thickness. The effect of polarization on the electrochemical reactions at the three-phase (electrode-gas-electrolyte) and two-phase (electrode-electrolyte) boundaries of the electrode was investigated by solid electrolyte cyclic voltammetry (SECV) at 350 °C and P O2 = 6 kPa. With the application of positive potential, silver oxide (Ag2O) was found to form along the three-phase boundary and then extends within the bulk of the electrode with increasing anodic potentials. By changing the hold time at positive potential, passivating oxide layers are formed which results in a shift in favor of the oxygen evolution reaction at the working electrode. This oxide forms according to a logarithmic rate expression with thick oxides being associated with decrease in current efficiency for subsequent oxide formation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Shim JH, Kim YB, Park JS et al (2012) Patterned silver nanomesh cathode for low-temperature solid oxide fuel cells. J Electrochem Soc 159:B541–B545

    CAS  Article  Google Scholar 

  2. Stoukides M (2000) Solid-electrolyte membrane reactors: current experience and future outlook. Catal Rev 42(1&2):1–70

    CAS  Article  Google Scholar 

  3. Riegel J, Neumann H, Wiedenmann H (2002) Exhaust gas sensors for automotive emission control. Solid State Ionics 152–153:783–800

    Article  Google Scholar 

  4. Bebelis S, Karasali H, Vayenas C (2008) Electrochemical promotion of CO2 hydrogenation on Rh/YSZ electrodes. J Appl Electrochem 38:1127–1133

    CAS  Article  Google Scholar 

  5. Baranova EA, Thursfield A, Brosda S et al (2005) Electrochemical promotion of ethylene oxidation over Rh catalyst thin films sputtered on YSZ and TiO2/YSZ Supports. J Electrochem Soc 152:E40–E49

    CAS  Article  Google Scholar 

  6. Vernoux P, Gaillard F, Bultel L et al (2002) Electrochemical promotion of propane and propene oxidation on Pt/YSZ. J Catal 208:412–421

    CAS  Article  Google Scholar 

  7. Dow W-P, Huang T-J (1996) Yttria-stabilized zirconia supported copper oxide Catalyst II. Effect of oxygen vacancy of support on catalytic activity for CO oxidation. J Catal 160:171–182

    CAS  Article  Google Scholar 

  8. Munoz M, Gallego S, Beltran J, Cerda J (2006) Adhesion at metal–ZrO2 interfaces. Surf Sci Rep 61:303–344

    CAS  Article  Google Scholar 

  9. Vernoux P, Lizzaraga L, de Lucas-Consuegra A et al (2013) Ionically conducting ceramics as active catalyst supports. Chem Rev 113:8192–8260

    CAS  Article  Google Scholar 

  10. Dole H, Isaifan JR, Sapountzi FM et al (2013) Low temperature toluene oxidation over Pt nanoparticles supported on yttria stabilized-zirconia. Catal Lett 143:996–1002

    CAS  Article  Google Scholar 

  11. Krishnamurthy R, Yoon Y, Srolovitz D, Car R (2004) Oxygen diffusion in yttria-stabilized zirconia: a new simulation model. J Am Ceram Soc 87:1821–1830

    CAS  Article  Google Scholar 

  12. Cantos-Gómez A, Ruiz-Bustos R, Van Duijn J (2011) Ag as an alternative for Ni in direct hydrocarbon SOFC anodes. Fuel Cells 11:140–143

    Article  Google Scholar 

  13. Simrick NJ, Kilner JA, Atkinson A (2012) Thermal stability of silver thin films on zirconia substrates. Thin Solid Films 520:2855–2867

    CAS  Article  Google Scholar 

  14. Chongterdtoonskul A, Schwank JW, Chavadej S (2012) Effects of oxide supports on ethylene epoxidation activity over Ag-based catalysts. J Mol Cat A 358:58–66

    CAS  Article  Google Scholar 

  15. Verykios X, Stein FP, Coughlin RW (1980) Influence of metal crystallite size and morphology on selectivity and activity of ethylene oxidation catalyzed by supported silver. J Catal 66:368–382

    CAS  Article  Google Scholar 

  16. Kenson RE, Lapkin M (1970) Kinetics and mechanism of ethylene oxidation: reactions of ethylene and ethylene oxide on a silver catalyst. J Phys Chem 74:1493–1502

    CAS  Article  Google Scholar 

  17. Bernhardt TM (2005) Gas-phase kinetics and catalytic reactions of small silver and gold clusters. Int J Mass Spectrom 243:1–29

    CAS  Article  Google Scholar 

  18. Aoyama N, Yoshida K, Abe A, Miyadera T (1997) Characterization of highly active silver catalyst for NOx reduction in lean-burning engine exhaust. Catal Lett 43:249–253

    CAS  Article  Google Scholar 

  19. Baiker A, Kilo M, Maciejewskiq M et al (1993) Hydrogenation of CO2 over copper, silver and gold-zirconia catalyst: comparative study of catalyst properties and reaction pathways. New Frontiers in Catalysis. pp 5071–5080

  20. Seimanides S, Stoukides M (1984) Solid-electrolyte-aided study of methane oxidation. J Catal 88:490–498

    CAS  Article  Google Scholar 

  21. Li N, Gaillard F (2009) Catalytic combustion of toluene over electrochemically promoted Ag catalyst. Appl Catal B 88:152–159

    CAS  Article  Google Scholar 

  22. Gaillard F, Li N (2009) Electrochemical promotion of toluene combustion on an inexpensive metallic catalyst. Catal Today 146:345–350

    CAS  Article  Google Scholar 

  23. Yi J, Yentekakis IV, Vayenas CG (1994) Potential programmed reduction—a new technique for investigating the thermodynamics and kinetics of chemisorption on catalysis supported on solid electrolytes. J Catal 148:240–251

    Article  Google Scholar 

  24. Vayenas CG, Bebelis S, Brosda S et al (2002) Electrochemical promotion of catalysis promotion, electrochemcial promotion and metal support interactions. Kluwer Academic Publishers, New York

    Google Scholar 

  25. Wagner C (1970) Adsorbed atomic species as intermediates in heterogeneous catalysis. In: 21 (ed) Adv. Catal. Academic Press Inc., London, pp 323–378

  26. Vayenas CG, Ioannides A, Bebelis S (1991) Solid electrolyte cyclic voltammetry for in situ investigation of catalyst surfaces. J Catal 129:67–87

    CAS  Article  Google Scholar 

  27. Jaccoud A, Foti G, Comninellis C (2006) Electrochemical investigation of platinum electrode in solid electrolyte cell. Electrochim Acta 51:1264–1273

    CAS  Article  Google Scholar 

  28. Falgairette C (2010) Stored electrogenerated promoters inducing sustainable enhanced Pt catalyst activity. Sciences-New York 4690:230

    Google Scholar 

  29. Souentie S, Falgairette C, Comninellis C (2010) Electrochemical investigation of the O2(g), Ni/YSZ system using cyclic voltammetry. J Electrochem Soc 157:P49

    CAS  Article  Google Scholar 

  30. Jiménez-Borja C, Souentie S, González-Cobos J et al (2013) Electrochemical investigation of O2-exposed Pd electrodes supported on YSZ. J Appl Electrochem 43:417–424

    Article  Google Scholar 

  31. Mutoro E, Luerssen B, Günther S, Janek J (2009) The electrode model system Pt(O2)|YSZ: Influence of impurities and electrode morphology on cyclic voltammograms. Solid State Ionics 180:1019–1033

    CAS  Article  Google Scholar 

  32. De Lucas-Consuegra A, Dorado F, Jiménez-Borja C et al (2009) Use of potassium conductors in the electrochemical promotion of environmental catalysis. Catal Today 146:293–298

    Article  Google Scholar 

  33. Briggs D, Seah MP (1996) Practipuis, vol. 1, 2nd edn. Wiley, New York

    Google Scholar 

  34. Angadi M, Udachan A (1981) Electrical properties of thin nickel films. Thin Solid Films 79:149–153

    CAS  Article  Google Scholar 

  35. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588

    Article  Google Scholar 

  36. Neugebauer CA, Webb MB (1962) Electrical conduction mechanism in ultrathin, evaporated metal films. J Appl Phys 33:74–82

    CAS  Article  Google Scholar 

  37. Essam J (1980) Percolation theory. Rep Prog Phys 43:834–912

    Article  Google Scholar 

  38. Thompson CV (2012) Solid-state dewetting of thin films. Annu Rev Mater Res 42:399–434

    CAS  Article  Google Scholar 

  39. Wu K, Bradley RM (1994) Theory of electromigration failure in polycrystalline metal films. Phys Rev B 50:12468–12488

    CAS  Article  Google Scholar 

  40. Bukhtiyarov V, Kondratenko V, Boronin AI (1993) Features of the interaction of a CO + O2 mixture with silver under high pressure. Surf Sci Lett 293:L826–L829

    CAS  Google Scholar 

  41. Bukhtiyarov V, Boronin A, Savchenko V (1994) Stages in the modification of a silver surface for catalysis of the patrial oxidation of ethylene. I Action of Oxygen. J Catal 1502:262–267

    Article  Google Scholar 

  42. Boa X, Muhler M, Pettinger B et al (1993) On the nature of the active state of silver during catalystic oxidation of methanol. Catal Lett 22:215–225

    Article  Google Scholar 

  43. Ntais S, Dracopoulos V, Siokou A (2004) TiCl4(THF)2 impregnation on a flat SiOx/Si(1 0 0) and on polycrystalline Au foil: Determination of surface species using XPS. J Mol Cat A 220:199–205

    CAS  Article  Google Scholar 

  44. Palloukis F, Zafeiratos S, Jaksic M, Neophytides SG (2004) The chemical state of electrodeposited thin Cr films on a polycrystaline Ni foil. J New Mater Electrochem Syst 7:173–177

    CAS  Google Scholar 

  45. Zemlyanov DY, Savinova E, Scheybal A et al (1998) XPS observation of OH groups incorporated in an Ag(111) electrode. Surf Sci 418:441–456

    CAS  Article  Google Scholar 

  46. Huang W, Jiang Z, Dong F, Bao X (2002) An AES, XPS and TDS study on the growth and property of silver thin film on the Pt(1 1 0)-(1 × 2) surface. Surf Sci 514:420–425

    CAS  Article  Google Scholar 

  47. Majumdar D, Chatterjee D (1991) X-ray photoelectron spectroscopic studies on yttria, zirconia, and yttria-stabilized zirconia. J Appl Phys 70:988

    CAS  Article  Google Scholar 

  48. Bae JS, Park S-S, Mun BS et al (2012) Surface modification of yttria-stabilized-zirconia thin films under various oxygen partial pressures. Thin Solid Films 520:5826–5831

    CAS  Article  Google Scholar 

  49. Xu Q, Huang D, Che W et al (2004) X-ray photoelectron spectroscopy investigation on chemical states of oxygen on surfaces of mixed electronic–ionic conducting La0.6Sr0.4Co1−yFeyO3 ceramics. Appl Surf Sci 228:110–114

    CAS  Article  Google Scholar 

  50. Harriott P (1971) The oxidation of ethylene using silver on different supports. J Catal 21:56–65

    CAS  Article  Google Scholar 

  51. Burstein GTN, Newman RC (1980) Anodic behaviour of scratched silver electrodes in alkaline solution. Electrochim Acta 25:1009–1013

    CAS  Article  Google Scholar 

  52. Bard AJ, Faulkner LR (2001) Electrochemical methods - fundamentals and applications, 2nd Ed. 864

  53. Abd El Rehim SS, Hassan HH, Ibrahim MAM, Amin MA (1998) Electrochemical behaviour of a silver electrode in NaOH solutions. Monatsh Chem 129:1103–1117

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Natural Science and Engineering Research Council (NSERC), Canada is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Baranova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fee, M., Ntais, S., Weck, A. et al. Electrochemical behavior of silver thin films interfaced with yttria-stabilized zirconia. J Solid State Electrochem 18, 2267–2277 (2014). https://doi.org/10.1007/s10008-014-2477-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2477-0

Keywords

  • Silver
  • Thin film
  • PVD
  • Yttria-stabilized zirconia
  • Cyclic voltammetry
  • Percolation