Skip to main content

Advertisement

Log in

Functionalized graphene foam as electrode for improved electrochemical storage

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report on a non-covalent functionalization of graphene foam (GF) synthesized via chemical vapour deposition (CVD). The GF was treated with pyrene carboxylic acid (PCA) which acted as a source of oxygen and/or hydroxyl groups attached to the surface of the graphene foam for its electrochemical performance improvement. The modified graphene surface enabled a high pseudocapacitive effect on the GF. A specific capacitance of 133.3 F g−1, power density ∼ 145.3 kW kg−1 and energy density ∼ 4.7 W h kg−1 were achieved based on the functionalized foam in 6 M KOH aqueous electrolyte. The results suggest that non-covalent functionalization might be an effective approach to overcome the restacking problem associated with graphene electrodes and also signify the importance of surface functionalities in graphene-based electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geim A, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    CAS  Google Scholar 

  2. Balandin A, Ghosh S, Bao W (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:907

    Article  Google Scholar 

  3. Novoselov KS, Geim A, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  4. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  5. Zhu Y, James DK, Tour JM (2012) New routes to graphene, graphene oxide and their related applications. Adv Mater 24:4924–4955

    Article  CAS  Google Scholar 

  6. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053

    Article  CAS  Google Scholar 

  7. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  8. Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed 49:2154–2157

    Article  CAS  Google Scholar 

  9. Eda G, Unalan HE, Rupesinghe N, Amaratunga GAJ, Chhowalla M (2008) Field emission from graphene based composite thin films. Appl Phys Lett 93:233502–1–233502–3

    Article  Google Scholar 

  10. Dimitrakakis GK, Tylianakis E, Froudakis GE (2008) Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett 8:3166–3170

    Article  CAS  Google Scholar 

  11. Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. Kluwer academic/Plenum Publishers, New york

  12. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251

    Article  CAS  Google Scholar 

  13. Wang Y, Cheng L, Xia Y-Y (2006) Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution. J Power Sources 153:191–196

    Article  CAS  Google Scholar 

  14. Yan J, Wei T, Shao B, Ma F, Fan Z, Zhang M, Zheng C, Shang Y, Qian W, Wei F (2010) Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon 48:1731–1737

    Article  CAS  Google Scholar 

  15. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  CAS  Google Scholar 

  16. Du C, Pan N (2006) High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17:5314–5318

    Article  CAS  Google Scholar 

  17. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  CAS  Google Scholar 

  18. Hummers W, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  19. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  20. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni V, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597

    Article  CAS  Google Scholar 

  21. Loh KP, Bao Q, Ang PK, Yang J (2010) The chemistry of graphene. J Mater Chem 2277–2289

  22. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  23. Fang Y, Luo B, Jia Y, Li X, Wang B, Song Q, Kang F, Zhi L (2012) Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv Mater 24:6348–6355

    Article  CAS  Google Scholar 

  24. Su Q, Pang S, Alijani V, Li C, Feng X, Mullen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21:3191–3195

    Article  CAS  Google Scholar 

  25. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720–7721

    Article  CAS  Google Scholar 

  26. Park S, Dikin DA, Nguyen ST, Ruoff RS (2009) Graphene oxide sheets chemically cross-linked by polyallylamine. J Phys Chem C 113:15801–15804

    Article  CAS  Google Scholar 

  27. Salavagione HJ, Gómez MA, Martínez G (2009) Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules 42:6331–6334

    Article  CAS  Google Scholar 

  28. Hou S, Kasner ML, Su S, Patel K, Cuellari R (2010) Highly sensitive and selective dopamine biosensor fabricated with silanized graphene. J Phys Chem C 114:14915–14921

    Article  CAS  Google Scholar 

  29. Yang H, Li F, Shan C, Han D, Zhang Q, Lab N, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632

    CAS  Google Scholar 

  30. Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21:3335

    CAS  Google Scholar 

  31. Xu Y, Bai H, Lu G et al (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857

    Article  CAS  Google Scholar 

  32. Dong X, Fu D, Fang W, Li C, Shi G (2009) Doping single layer graphene with aromatic molecules. Small 5:1422–1426

    Article  CAS  Google Scholar 

  33. Dong X, Shi Y, Zhao Y, Chen D, Ye J, Yao Y, Gao F, Ni Z, Yu T, Shen Z, Huang Y, Chen P, Li L-J (2009) Symmetry breaking of graphene monolayers by molecular decoration. Phys Rev Lett 102:135501–135504

    Article  Google Scholar 

  34. Strobel P, Riedel M, Ristein J, Ley L (2004) Surface transfer doping of diamond. Nature 430:439–441

    Article  CAS  Google Scholar 

  35. Hsu C-L, Lin C-T, Huang J-H, Chu C-W, Wei K-H, Li L-J (2012) Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells. ACS Nano 6:5031–5039

    Article  CAS  Google Scholar 

  36. Liu H, Gao J, Xue M, Zhu N, Zhang M, Cao T (2009) Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir 25:12006–12010

    Article  CAS  Google Scholar 

  37. Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18:3506–3514

    Article  CAS  Google Scholar 

  38. Ghosh S, An X, Shah R, Rawat D, Dave B, Kar S, Talapatra S (2012) Effect of 1-pyrene carboxylic-acid functionalization of graphene on its capacitive energy storage. J Phys Chem C 116:20688–20693

    Article  CAS  Google Scholar 

  39. An X, Simmons T, Shah R, Wolfe C, Lewis KM, Washington M, Nayak SK, Talapatra S, Kar S (2010) Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett 10:4295–4301

    Article  CAS  Google Scholar 

  40. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428

    CAS  Google Scholar 

  41. Bello A, Makgopa K, Fabiane M, Dodoo-Ahrin D, Ozoemena KI (2013) Manyala N (2013) Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J Mater Sci 48:6707–6712

    Article  CAS  Google Scholar 

  42. Ferrari A (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    Article  CAS  Google Scholar 

  43. Kitaura R, Imazu N, Kobayashi K, Shinohara H (2008) Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction. Nano Lett 8:693–699

    Article  CAS  Google Scholar 

  44. Zhou J, Song H, Ma L, Chen X (2011) Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Adv 1:782–791

    Article  CAS  Google Scholar 

  45. Hu J, Ramadan A, Luo F, Qi B, Deng X, Chen J (2011) One-step molybdate ion assisted electrochemical synthesis of α-MoO3-decorated graphene sheets and its potential applications. J Mater Chem 21:15009–15014

    CAS  Google Scholar 

  46. Park S, An J, Piner RD, Jung I, Yang D, Velamakanni A, Nguyen ST, Ruoff RS (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594

    Article  CAS  Google Scholar 

  47. Chae SJ, Gunes F, Kim KK, Kim ES, Han GH, Kim SM, Shin H-J, Yoon S-M, Choi J-Y, Park MH, Yang CW, Pribat D, Lee YH (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21:2328–2333

    Article  CAS  Google Scholar 

  48. Bello A, Fashedemi OO, Lekitima JN, Fabiane M, Dodoo-Arhin D, Ozoemena KI, Gogotsi Y, Johnson ATC, Manyala N (2013) High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide. AIP Adv 3:82118

    Article  Google Scholar 

  49. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is based upon research supported by the South African Research Chairs Initiative of the Department of Science and Technology (SARCHi-DST) and the National Research Foundation (NRF). Any opinion, findings and conclusions or recommendations expressed in this work are those of the authors, and therefore, the NRF and DST do not accept any liability with regard thereto. A. Bello, D. Y. Momodu and M. Fabiane acknowledge the financial support from the University of Pretoria and NRF for the Ph.D. bursaries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Manyala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bello, A., Fabiane, M., Momodu, D.Y. et al. Functionalized graphene foam as electrode for improved electrochemical storage. J Solid State Electrochem 18, 2359–2365 (2014). https://doi.org/10.1007/s10008-014-2473-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2473-4

Keywords

Navigation