Skip to main content
Log in

The electrodeposition of Zn-Ti alloys from ZnCl2-urea deep eutectic solvent

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior of Ti(IV) and the electrodeposition of Zn-Ti alloys were investigated in a ZnCl2-urea (1:3 molar ratio) deep eutectic solvent containing 0.27 mol L−1 TiCl4. The electrochemical reduction of Ti(IV) to Ti was complicated by the formation of intermediate oxidation states of Ti(III) and Ti(II), as well as the precipitation of TiCl3. It was possible to prepare Zn-Ti alloys containing 5.8–16.7 at.% Ti. The composition and surface morphology of Zn-Ti alloys depended on deposition potential and temperature. The deposits could be indexed to a disordered hexagonal close-packed structure similar to pure Zn and were completely chloride-free. The current efficiency for the deposition of Zn-Ti alloys varied from 38.4 to 67.9 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wilcox GD, Gabe DR (1993) Corr Sci 35:1251–1258

    Article  CAS  Google Scholar 

  2. Pletcher D (1984) Industrial electrochemistry. Chapman and Hall, London

    Book  Google Scholar 

  3. Buzzeo MC, Evans RG, Compton RG (2004) Chem Phys Chem 5:1106–1120

    Article  CAS  Google Scholar 

  4. Zein El Abedin S, Endres F (2006) Chem Phys Chem 7:58–61

    Article  CAS  Google Scholar 

  5. Mukhopadhyay I, Freyland W (2003) Langmuir 19:1951–1953

    Article  CAS  Google Scholar 

  6. Pradhan D, Reddy RG (2009) Electrochim Acta 54:1874–1880

    Article  CAS  Google Scholar 

  7. Carlin RT, Osteryoung RA, Wilkes JS, Rovang J (1990) Inorg Chem 29:3003–3009

    Article  CAS  Google Scholar 

  8. Tsuda T, Hussey CL, Stafford GR, Bonevich JE (2003) J Electrochem Soc C 150:234–243

    Article  Google Scholar 

  9. Ali MR, Nishikata A, Tsuru T (2003) Indian J Chem Technol 10:21–26

    Google Scholar 

  10. Mukhopadhyay I, Aravinda CLR, Borissov D, Freyland W (2005) Electrochim Acta 50:1275–1281

    Article  CAS  Google Scholar 

  11. Endres F, Zein El Abedin S, Saad AY, Moustafa EM, Borissenko N, Price WE, Wallace GG, MacFarlane DR, Newmanc PJ, Bund A (2008) Phys Chem Chem Phys 10:2189–2199

    Article  CAS  Google Scholar 

  12. Pana SJ, Tsaia WT, Sun IW (2010) Electrochem Solid-State Lett D 13:69–71

    Article  Google Scholar 

  13. Chen PY, Hussey CL (2007) Electrochim Acta 52:1857–1864

    Article  CAS  Google Scholar 

  14. Huang JF, Sun IW (2004) J Electrochem Soc C 151:8–15

    Article  Google Scholar 

  15. Borissov JD, Pareek A, Renner FU, Rohwerder M (2010) Phys Chem Chem Phys 12:2059–2062

    Article  CAS  Google Scholar 

  16. Lin MC, Chen PY, Sun IW (2001) J Electrochem Soc C 148:653–658

    Article  Google Scholar 

  17. Clare B, Sirwardana A, MacFarlane DR (2009) Top Curr Chem 290:1–40

    Article  CAS  Google Scholar 

  18. Wasserscheid P, Welton T (2002) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  19. Abbott AP, Barron JC, Ryder KS, Wilson D (2007) Chem–Eur J 13:6495–6501

    CAS  Google Scholar 

  20. Fletcher S, Halliday CS, Gates D, Westcott M, Lwin T, Nelson G (1983) J Electroanal Chem Interfacial Electrochem 159:267–285

    Article  CAS  Google Scholar 

  21. Nicholson RS (1966) Anal Chem 38:1406–1406

    Article  CAS  Google Scholar 

  22. Nicholson RS, Shain I (1964) Anal Chem 36:706–723

    Article  CAS  Google Scholar 

  23. Brenner A (1963) Electrodeposition of alloys: principles and practice. Academic Press, New York

    Google Scholar 

  24. Leone GL, Niessen P, Rerr HW (1975) Metall Trans B 6:503–511

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate for the support of the National Natural Science Foundation of China (Project Nos. 21263007 and 51274108) for this work and the Natural Science Foundation from Science and Technology Committee of Yunnan, China (Project No. 2011FA009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunying Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Wu, Q., Hua, Y. et al. The electrodeposition of Zn-Ti alloys from ZnCl2-urea deep eutectic solvent. J Solid State Electrochem 18, 2149–2155 (2014). https://doi.org/10.1007/s10008-014-2468-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2468-1

Keywords

Navigation