Skip to main content

Advertisement

Log in

Enhanced electron collection in photoanode based on ultrafine TiO2 nanotubes by a rapid anodization process

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The separated and ultrafine TiO2 nanotubes are fabricated by a modified rapid anodization method, which cannot be achieved through conventional anodization. Then, model dye-sensitized solar cells based on the prepared TiO2 nanotubes and commercial TiO2 nanoparticles (P25) are investigated, and a discrepancy is discovered between the light-harvesting capability and the power conversion efficiency. The charge transport and recombination are studied by the electrochemical impedance spectroscopy and the open-circuit voltage decay technique. Results show that the nanotube photoanode owns a longer electron diffusion length and a larger electron lifetime than the nanoparticle one, which can compensate for the loss of light absorption. The enhanced electron collection efficiency observed is attributed to the facilitated charge carrier pathways in the photoanode composed by the separated TiO2 nanotubes fabricated in this work. Therefore, the TiO2 nanotubes synthesized by this method are verified to have good electronic properties, which might find applications not only in photovoltaic, but also in catalysis, sensors, and other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O'Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  2. Wang B, Kerr LL (2012) Stability of CdS-coated TiO2 solar cells. J Solid State Electrochem 16(3):1091–1097

    Article  CAS  Google Scholar 

  3. Laskova B, Zukalova M, Kavan L, Chou A, Liska P, Wei Z, Bin L, Kubat P, Ghadiri E, Moser JE, Graetzel M (2012) Voltage enhancement in dye-sensitized solar cell using (001)-oriented anatase TiO2 nanosheets. J Solid State Electrochem 16(9):2993–3001

    Article  CAS  Google Scholar 

  4. Beranek R, Macak JM, Gaertner M, Meyer K, Schmuki P (2009) Enhanced visible light photocurrent generation at surface-modified TiO2 nanotubes. Electrochim Acta 54(9):2640–2646

    Article  CAS  Google Scholar 

  5. Xie Y, Du H (2012) Electrochemical capacitance performance of polypyrrole-titania nanotube hybrid. J Solid State Electrochem 16(8):2683–2689

    Article  CAS  Google Scholar 

  6. Kharian S, Teymoori N, Khalilzadeh MA (2012) Multi-wall carbon nanotubes and TiO2 as a sensor for electrocatalytic determination of epinephrine in the presence of p-chloranil as a mediator. J Solid State Electrochem 16(2):563–568

    Article  CAS  Google Scholar 

  7. Bae C, Yoon Y, Yoo H, Han D, Cho J, Lee BH, Sung MM, Lee M, Kim J, Shin H (2009) Controlled fabrication of multiwall anatase Tio2 nanotubular architectures. Chem Mater 21(13):2574–2576

    Article  CAS  Google Scholar 

  8. Tang Y, Lai Y, Gong D, Goh K-H, Lim T-T, Dong Z, Chen Z (2010) Ultrafast synthesis of layered titanate microspherulite particles by electrochemical spark discharge spallation. Chem-Eur J 16(26):7704–7708

    Article  CAS  Google Scholar 

  9. Alexander M, Pandian K (2013) Carbon sphere-assisted preparation of TiO2 hollow nanospheres and its electrocatalytic reduction of H2O2, oxidation of antioxidants and ethanol sensor. J Solid State Electrochem 17(8):2173–2182

    Article  CAS  Google Scholar 

  10. Abayev I, Zaban A, Kytin VG, Danilin AA, Garcia-Belmonte G, Bisquert J (2007) Properties of the electronic density of states in TiO2 nanoparticles surrounded with aqueous electrolyte. J Solid State Electrochem 11(5):647–653

    Article  CAS  Google Scholar 

  11. Paramasivam I, Macak JM, Selvam T, Schmuki P (2008) Electrochemical synthesis of self-organized TiO2 nanotubular structures using an ionic liquid (BMIM-BF4). Electrochim Acta 54(2):643–648

    Article  CAS  Google Scholar 

  12. Khan MA, Yang OB (2009) Optimization of silica content in initial sol–gel grain particles for the low temperature hydrothermal synthesis of titania nanotubes. Cryst Growth Des 9(4):1767–1774

    Article  CAS  Google Scholar 

  13. Zhong P, Que W, Hu X (2011) Direct imprinting of ordered and dense TiO2 nanopore arrays by using a soft template for photovoltaic applications. Appl Surf Sci 257(23):9872–9878

    Article  CAS  Google Scholar 

  14. Sun L, Zhang S, Sun XW, Wang X, Cai Y (2010) Double-sided anodic titania nanotube arrays: a lopsided growth process. Langmuir 26(23):18424–18429

    Article  CAS  Google Scholar 

  15. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Graetzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634

    Article  CAS  Google Scholar 

  16. Zhong P, Que W, Chen J, Hu X (2012) Elucidating the role of ultrathin Pt film in back-illuminated dye-sensitized solar cells using anodic TiO2 nanotube arrays. J Power Sources 210:38–41

    Article  CAS  Google Scholar 

  17. Zhong P, Que W, Zhang J, Jia Q, Wang W, Liao Y, Hu X (2011) Charge transport and recombination in dye-sensitized solar cells based on hybrid films of TiO2 particles/TiO2 nanotubes. J Alloy Compd 509(29):7808–7813

    Article  CAS  Google Scholar 

  18. Wang H, Yip CT, Cheung KY, Djurisic AB, Xie MH, Leung YH, Chan WK (2006) Titania-nanotube-array-based photovoltaic cells. Appl Phys Lett 89(2):023508

    Article  Google Scholar 

  19. Kim D, Ghicov A, Schmuki P (2008) TiO2 nanotube arrays: elimination of disordered top layers ("nanograss") for improved photoconversion efficiency in dye-sensitized solar cells. Electrochem Commun 10(12):1835–1838

    Article  CAS  Google Scholar 

  20. Stergiopoulos T, Ghicov A, Likodimos V, Tsoukleris DS, Kunze J, Schmuki P, Falaras P (2008) Dye-sensitized solar cells based on thick highly ordered TiO(2) nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media. Nanotechnology 19 (23)

  21. Alivov Y, Fan ZY (2009) Efficiency of dye sensitized solar cells based on TiO2 nanotubes filled with nanoparticles. Appl Phys Lett 95(6)

  22. Kang T-S, Smith AP, Taylor BE, Durstock MF (2009) Fabrication of highly-ordered Tio2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett 9(2):601–606

    Article  CAS  Google Scholar 

  23. Stergiopoulos T, Valota A, Likodimos V, Speliotis T, Niarchos D, Skeldon P, Thompson GE, Falaras P (2009) Dye-sensitization of self-assembled titania nanotubes prepared by galvanostatic anodization of Ti sputtered on conductive glass. Nanotechnology 20(36):365601

    Article  CAS  Google Scholar 

  24. Varghese OK, Paulose M, Grimes CA (2009) Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat Nanotechnol 4(9):592–597

    Article  CAS  Google Scholar 

  25. Xu C, Shin PH, Cao L, Wu J, Gao D (2010) Ordered Tio2 nanotube arrays on transparent conductive oxide for dye-sensitized solar cells. Chem Mater 22(1):143–148

    Article  CAS  Google Scholar 

  26. Roy P, Albu SP, Schmuki P (2010) TiO2 nanotubes in dye-sensitized solar cells: higher efficiencies by well-defined tube tops. Electrochem Commun 12(7):949–951

    Article  CAS  Google Scholar 

  27. Li L-L, Tsai C-Y, Wu H-P, Chen C-C, Diau EW-G (2010) Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells. J Mater Chem 20(14):2753–2819

    Article  CAS  Google Scholar 

  28. Lei B-X, Liao J-Y, Zhang R, Wang J, Su C-Y, Kuang D-B (2010) Ordered crystalline Tio2 nanotube arrays on transparent fto glass for efficient dye-sensitized solar cells. J Phys Chem C 114(35):15228–15233

    Article  CAS  Google Scholar 

  29. Zhuge F, Qiu J, Li X, Gao X, Gan X, Yu W (2011) Toward hierarchical Tio2 nanotube arrays for efficient dye-sensitized solar cells. Adv Mater 23(11):1330–1334

    Article  CAS  Google Scholar 

  30. Pang Q, Leng L, Zhao L, Zhou L, Liang C, Lan Y (2011) Dye sensitized solar cells using freestanding TiO2 nanotube arrays on FTO substrate as photoanode. Mater Chem Phys 125(3):612–616

    Article  CAS  Google Scholar 

  31. So S, Lee K, Schmuki P (2013) High-aspect-ratio dye-sensitized solar cells based on robust, fast-growing Tio2 nanotubes. Chem-Eur J 19(9):2966–2970

    Article  CAS  Google Scholar 

  32. Mir N, Lee K, Paramasivam I, Schmuki P (2012) Optimizing Tio2 nanotube top geometry for use in dye-sensitized solar cells. Chem-Eur J 18(38):11862–11866

    Article  CAS  Google Scholar 

  33. Liu N, Albu SP, Lee K, So S, Schmuki P (2012) Water annealing and other low temperature treatments of anodic TiO2 nanotubes: a comparison of properties and efficiencies in dye sensitized solar cells and for water splitting. Electrochim Acta 82:98–102

    Article  CAS  Google Scholar 

  34. K-l L, Z-b X, Adams S (2012) A reliable TiO2 nanotube membrane transfer method and its application in photovoltaic devices. Electrochim Acta 62:116–123

    Article  Google Scholar 

  35. Fan K, Chen J, Yang F, Peng T (2012) Self-organized film of ultra-fine TiO2 nanotubes and its application to dye-sensitized solar cells on a flexible Ti-foil substrate. J Mater Chem 22(11):4681–4686

    Article  CAS  Google Scholar 

  36. Mirabolghasemi H, Liu N, Lee K, Schmuki P (2013) Formation of 'single walled' TiO2 nanotubes with significantly enhanced electronic properties for higher efficiency dye-sensitized solar cells. Chem Commun 49(20):2067–2069

    Article  CAS  Google Scholar 

  37. Lee K, Schmuki P (2013) Bottom sealing and photoelectrochemical properties of different types of anodic TiO2 nanotubes. Electrochim Acta 100:229–235

    Article  Google Scholar 

  38. Hahn R, Stergiooulus T, Macak JM, Tsoukleris D, Kontos AG, Albu SP, Kim D, Ghicov A, Kunze J, Falaras P, Schmuki P (2007) Efficient solar energy conversion using TiO2 nanotubes produced by rapid breakdown anodization—a comparison. Physica Status Solidi-Rapid Res Lett 1(4):135–137

    Article  CAS  Google Scholar 

  39. Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7(1):69–74

    Article  CAS  Google Scholar 

  40. Lee KS, Kwon J, Im JH, Lee CR, Park N-G, Park JH (2012) Size-tunable, fast, and facile synthesis of titanium oxide nanotube powders for dye-sensitized solar cells. Acs Appl Mater Interfaces 4(8):4164–4168

    Article  CAS  Google Scholar 

  41. Fahim NF, Sekino T (2009) A novel method for synthesis of titania nanotube powders using rapid breakdown anodization. Chem Mater 21(9):1967–1979

    Article  CAS  Google Scholar 

  42. Liao Y, Que W, Tang Z, Wang W, Zhao W (2011) Effects of heat treatment scheme on the photocatalytic activity of TiO2 nanotube powders derived by a facile electrochemical process. J Alloy Compd 509(3):1054–1059

    Article  CAS  Google Scholar 

  43. Liao Y, Que W (2010) Preparation and photocatalytic activity of TiO2 nanotube powders derived by a rapid anodization process. J Alloy Compd 505(1):243–248

    Article  CAS  Google Scholar 

  44. Antony RP, Mathews T, Dasgupta A, Dash S, Tyagi AK, Raj B (2011) Rapid breakdown anodization technique for the synthesis of high aspect ratio and high surface area anatase TiO2 nanotube powders. J Solid State Chem 184(3):624–632

    Article  CAS  Google Scholar 

  45. Antony RP, Mathews T, Ramesh C, Murugesan N, Dasgupta A, Dhara S, Dash S, Tyagi AK (2012) Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization. Int J Hydrogen Energ 37(10):8268–8276

    Article  CAS  Google Scholar 

  46. Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB (2008) Dye-sensitized solar cells based on oriented Tio2 nanotube arrays: transport, trapping, and transfer of electrons. J Am Chem Soc 130:13364–13372

    Article  CAS  Google Scholar 

  47. Mohapatra SK, Misra M, Mahajan VK, Raja KS (2008) Synthesis of Y-branched TiO(2) nanotubes. Mater Lett 62(12–13):1772–1774

    Article  CAS  Google Scholar 

  48. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energ Mater Sol C 90(14):2011–2075

    Article  CAS  Google Scholar 

  49. Prakasam HE, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C 111(20):7235–7241

    Article  CAS  Google Scholar 

  50. Zhao L, Du Q, Jiang G, Guo S (2007) Attapulgite and ultrasonic oscillation induced crystallization behavior of polypropylene. J Polym Sci Polym Phys 45(16):2300–2308

    Article  CAS  Google Scholar 

  51. Berger S, Kunze J, Schmuki P, LeClere D, Valota AT, Skeldon P, Thompson GE (2009) A lithographic approach to determine volume expansion factors during anodization: using the example of initiation and growth of TiO2-nanotubes. Electrochim Acta 54(24):5942–5948

    Article  CAS  Google Scholar 

  52. Chanmanee W, Watcharenwong A, Chenthamarakshan CR, Kajitvichyanukul P, de Tacconi NR, Rajeshwar K (2007) Titania naotubes from pulse anodization of titanium foils. Electrochem Commun 9(8):2145–2149

    Article  CAS  Google Scholar 

  53. Liao Y, Que W, Zhong P, Zhang J, He Y (2011) A facile method to crystallize amorphous anodized TiO2 nanotubes at low temperature. Acs Appl Mater Interfaces 3(7):2800–2804

    Article  CAS  Google Scholar 

  54. Park NG, van de Lagemaat J, Frank AJ (2000) Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J Phys Chem B 104(38):8989–8994

    Article  CAS  Google Scholar 

  55. Roy P, Kim D, Paramasivam I, Schmuki P (2009) Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles. Electrochem Commun 11(5):1001–1004

    Article  CAS  Google Scholar 

  56. O'Regan BC, Durrant JR, Sommeling PM, Bakker NJ (2007) Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit. J Phys Chem C 111(37):14001–14010

    Article  Google Scholar 

  57. Lee S-W, Ahn K-S, Zhu K, Neale NR, Frank AJ (2012) Effects of TiCl4 treatment of nanoporous Tio2 films on morphology, light harvesting, and charge-carrier dynamics in dye-sensitized solar cells. J Phys Chem C 116(40):21285–21290

    Article  CAS  Google Scholar 

  58. Wang J, Lin Z (2010) Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem Mater 22(2):579–584

    Article  CAS  Google Scholar 

  59. Lee B, Buchholz DB, Guo P, Hwang D-K, Chang RPH (2011) Optimizing the performance of a plastic dye-sensitized solar cell. J Phys Chem C 115(19):9787–9796

    Article  CAS  Google Scholar 

  60. Wang Q, Ito S, Graetzel M, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Bessho T, Imai H (2006) Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B 110(50):25210–25221

    Article  CAS  Google Scholar 

  61. Lin C-J, Yu W-Y, Chien S-H (2007) Effect of anodic TiO(2) powder as additive on electron transport properties in nanocrystalline TiO(2) dye-sensitized solar cells. Appl Phys Lett 91(23):233120

    Article  Google Scholar 

  62. Bisquert J, Zaban A, Greenshtein M, Mora-Sero I (2004) Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J Am Chem Soc 126(41):13550–13559

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities under Grant No. K5051305017, and the Research Fund for the Doctoral Program of Higher Education of China under Grant 20120201130004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Zhong or Wenxiu Que.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, P., Liao, Y., Que, W. et al. Enhanced electron collection in photoanode based on ultrafine TiO2 nanotubes by a rapid anodization process. J Solid State Electrochem 18, 2087–2098 (2014). https://doi.org/10.1007/s10008-014-2463-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2463-6

Keywords

Navigation