Skip to main content
Log in

Preparation, characterization, and evaluation of LiNi0.4Co0.6O2 nanofibers for supercapacitor applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We prepared LiNi0.4Co0.6O2 nanofibers by electrospinning at the calcination temperature of 450 °C for 6 h. The prepared LiNi0.4Co0.6O2 nanofibers was characterized by thermal, X-ray diffraction, and Fourier transform infrared (FTIR) studies. The morphology of LiNi0.4Co0.6O2 nanofibers was characterized by scanning electron microscopy studies. The asymmetric supercapacitor was fabricated using LiNi0.4Co0.6O2 nanofibers as positive electrode and activated carbon (AC) as negative electrode and a porous polypropylene separator in 1 M LiPF6–ethylene carbonate/dimethyl carbonate (LiPF6–EC:DMC) (1:1 v/v) as electrolyte. Cyclic voltammetry studies were then carried out in the potential range of 0 to 3.0 V at different scan rates which exhibited the highest specific capacitance of 72.9 F g−1. The electrochemical impedance measurements were carried out to find the charge transfer resistance and specific capacitance of the cell, and they were found to be 5.05 Ω and 67.4 F g−1, respectively. Finally, the charge–discharge studies were carried out at a current density of 1 mA cm−2 to find out the discharge-specific capacitance, energy density, and power density of the capacitor cell, and they were found to be 70.9 F g−1, 180.2 Wh kg−1, and 248.0 W kg−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhao G, Wen T, Chen C, Wang X (2012) RSC Adv 2:9286–9303

    Article  CAS  Google Scholar 

  2. Zeng J, Zhang Q, Chen J, Xia Y (2010) Nano Lett 10:30–35

    Article  CAS  Google Scholar 

  3. Cericola D, Ruch PW, Kotz R, Novak P, Wokaun A (2010) J Power Sources 195:2731–2736

    Article  CAS  Google Scholar 

  4. Xu W, Afriyanti S, Eugene K, Chaoyi Y, Pooi See L (2012) J Phys Chem C 116:4930–4935

    Article  Google Scholar 

  5. Tang W, Hou YY, Wang XJ, Bai Y, Zhu YS, Sun H, Yue YB, Wu YP, Zhub K, Holzec R (2012) J Power Sources 197:330–333

    Article  CAS  Google Scholar 

  6. Yan Jing H, Qiong Yu L, Xiao Yun X, Ling W (2011) Mater Chem Phys 126:432–436

    Google Scholar 

  7. Xue Y, Chen Y, Zhang M-l, Yan Y-d (2009) Metall Mater 16:112–118

    CAS  Google Scholar 

  8. Zhao Y, Wang YY, Lai QY, Chen LM, Hao YJ, Ji XY (2009) Synth Met 159:331–337

    Article  CAS  Google Scholar 

  9. Hong Soo C, TaeHoon K, Ji Hyuk I, Chong Rae P (2011) Nanotechnology 22:405402–406411

    Article  Google Scholar 

  10. Amaresh S, Kim GJ, Karthikeyan K, Aravindan V, Chung KY, Cho BW, Lee YS (2012) Phys Chem Chem Phys 14:11904–11909

    Article  CAS  Google Scholar 

  11. Zhao D, Wang Y, Zhang Y (2011) Nano-Micro Lett 3:62–71

    CAS  Google Scholar 

  12. Desai AV, Haque MA (2007) Appl Phys Lett 90:033102–033104

    Article  Google Scholar 

  13. Bhardwaj N, Kundu SC (2010) Biotechnol Adv 28:325–347

    Article  CAS  Google Scholar 

  14. Ramesh Babu B, Periasamy P, Thirunakaran R, Kalaiselvi N, Prem Kumar T, Raghavan M, Renganathan NG, Muniyandi N (2001) Int J Inorg Mater 3:401–404

    Article  Google Scholar 

  15. Sathiya Priya AR, Subramania A, Young-Sam Y, Kang-Jin K (2008) Langmuir 24:9816–9819

    Article  Google Scholar 

  16. Chen F, Li R, Hou M, Liu L, Wang R, Deng Z (2005) Electrochim Acta 51:61–65

    Article  CAS  Google Scholar 

  17. Richard Prabhu Gnanakan S, Murugananthem N, Subramania A (2011) Polym Adv Technol 22:788–793

    Article  Google Scholar 

  18. Shao C, Na Y, Liu Y, Rixiang M (2006) J Phys Chem Solids 67:1423–1431

    CAS  Google Scholar 

  19. Joint Commission on Power Diffraction Standards (JCPDS), Card No. 44-145, International Center for Diffraction Data, 1995.

  20. Yang S, Yue H, Yin Y, Yang J, Yang W (2006) Electrochim Acta 51:4971–4976

    Article  CAS  Google Scholar 

  21. Saradha T, Muzhumathi S, Subramania A (2008) J Solid State Electrochem 12:143–148

    CAS  Google Scholar 

  22. Miaomiao Y, Bin C, Huaihe S, Xiaohong C (2010) Electrochim Acta 55:7021–7027

    Article  Google Scholar 

  23. Periasamy P, Ramesh Babu B, Thirunakaran R, Kalaiselvi N, Prem Kumar T, Renganathan NG, Raghavan M, Muniyandi N (2000) Bull Mater Sci 23:345–348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the DST-Nano Mission, New Delhi and UGC, New Delhi for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Subramania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuvanalogini, G., Murugananthem, N., Shobana, V. et al. Preparation, characterization, and evaluation of LiNi0.4Co0.6O2 nanofibers for supercapacitor applications. J Solid State Electrochem 18, 2387–2392 (2014). https://doi.org/10.1007/s10008-014-2460-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2460-9

Keywords

Navigation