Skip to main content
Log in

Understanding the structural and electronic properties of the cathode material NaFeF3 in a Na-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Na-ion battery cathode material NaFeF3 and the corresponding desodiated products were investigated by using first-principle density functional theory calculations within the generalized gradient approximation (GGA) + U framework. Our results show that Na0.5FeF3 is the only energetically stable intermediate phase among the cases considered in the present work (x = 0.75, 0.5, 0.25), leading to theoretically two voltage plateaus, i.e., 2.63 V (1 ≥ x ≥ 0.5) and 2.82 V (0.5 ≥ x ≥ 0) in Na x FeF3, respectively. The mean charge voltage of the extraction of the first 0.5 Na ions agrees well with the experimental value, but the one of the extraction of the second 0.5 Na ions exhibits a relatively low value comparing to the experimental results, indicating that another end phase exists, which is consistent with the recent experiments. Furthermore, the electronic structures upon the desodiation are also discussed, and charge localization into distinct Fe2+ and Fe3+ is found in the intermediate-phase Na0.5FeF3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958

    Article  CAS  Google Scholar 

  2. Gocheva ID, Nishijima M, Doi T, Okada S, Yamaki J, Nishida T (2009) Mechanochemical synthesis of NaMF3 (M = Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries. J Power Sources 187:247–252

    Article  CAS  Google Scholar 

  3. Kitajou A, Komatsu H, Chihara K, Gocheva ID, Okada S, Yamaki J (2012) Novel synthesis and electrochemical properties of perovskite-type NaFeF3 for a sodium-ion battery. J Power Sources 198:389–392

    Article  CAS  Google Scholar 

  4. Yamada Y, Doi T, Tanaka I, Okada S, Yamaki J (2011) Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries. J Power Sources 196:4837–4841

    Article  CAS  Google Scholar 

  5. Dimov N, Nishimura A, Chihara K, Kitajou A, Gocheva ID, Okada S (2013) Transition metal NaMF3 compounds as model systems for studying the feasibility of ternary Li-M-F and Na-M-F single phases as cathodes for lithium-ion and sodium-ion batteries. Electrochim Acta 110:214–220

    Article  CAS  Google Scholar 

  6. Casolo S, Lovvik OM, Fjeld H, Norby T (2012) Theoretical analysis of oxygen vacancies in layered sodium cobaltate, NaxCoO2−δ. J Phys Condens Matter 24:475505–475510

    Article  Google Scholar 

  7. Kim H, Kim DJ, Seo DH, Yeom MS, Kang K, Kim DK, Jung Y (2012) Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery. Chem Mater 24:1205–1211

    Article  CAS  Google Scholar 

  8. Kim H, Shakoor RA, Park C, Lim SY, Kim JS, Jo YN, Cho W, Miyasaka K, Kahraman R, Jung Y, Choi JW (2013) Na2 FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv Funct Mater 23:1147–1155

    Article  CAS  Google Scholar 

  9. Zheng Y, Zhang P, Wu SQ, Wen YH, Zhu ZZ, Yang Y (2013) First-principles investigations on the Na2MnPO4F as a cathode material for Na-ion batteries. J Electrochem Soc 160:A927–A932

    Google Scholar 

  10. Badway F, Pereira N, Cosandey F, Amatucci GG (2003) Carbon-metal fluoride nanocomposites: structure and electrochemistry of FeF3:C. J Electrochem Soc 150:A1209–A1218

    Article  CAS  Google Scholar 

  11. Arai H, Okada S, Sakurai Y, Yamaki J (1997) Cathode performance and voltage estimation of metal trihalides. J Power Sources 68:716–719

    Article  CAS  Google Scholar 

  12. Nishijima M, Gocheva ID, Okada S, Doi T, Yamaki J, Nishida T (2009) Cathode properties of metal trifluorides in Li and Na secondary batteries. J Power Sources 190:558–562

    Article  CAS  Google Scholar 

  13. Li RF, Wu SQ, Yang Y, Zhu ZZ (2010) Structural and electronic properties of Li-ion battery cathode material FeF3. J Phys Chem C 114:16813–16817

    Article  CAS  Google Scholar 

  14. Bervas M, Badway F, Klein LC, Amatucci GG (2005) Bismuth fluoride nanocomposite as a positive electrode material for rechargeable lithium batteries. Electrochem Solid-State Lett 8:A179–A183

    Article  CAS  Google Scholar 

  15. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  16. Kresse G, Joubert D (1999) Projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  17. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  18. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  19. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  20. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57:1505–1509

    Google Scholar 

  21. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  22. Tressaud A, De Pape R, Portier J, Hagenmuller P, Seances CR (1968) Rb2FeF4, crystallographic data. Acad Sci Ser C 266:984–986

    Google Scholar 

  23. Wu SQ, Zhu ZZ, Yang Y, Hou ZF (2009) Structural stabilities, electronic structures and lithium deintercalation in LixMSiO4 (M = Mn, Fe, Co, Ni): a GGA and GGA + U study. Comput Mater Sci 44:1243–1251

    Google Scholar 

  24. Garcia-Fernandez P, Aramburu JA, Barriuso MT, Moreno M (2010) Key role of covalent bonding in octahedral tilting in perovskites. J Phys Chem Lett 1:647–651

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Basic Research Program of China (973 program, Grant No. 2011CB935903), the National Natural Science Foundation of China under Grant Nos. 21233004 and 11004165, and the Scientific Research Foundation of the Education Department of Fujian Province under Grant No. JK2011045.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Q. Wu or Z. Z. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, S., Zhang, P., Wu, S.Q. et al. Understanding the structural and electronic properties of the cathode material NaFeF3 in a Na-ion battery. J Solid State Electrochem 18, 2071–2075 (2014). https://doi.org/10.1007/s10008-014-2454-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2454-7

Keywords

Navigation