Skip to main content
Log in

Nitrogen-containing nanoporous carbons by a rational template carbonization method evinced in the cases of 1, 10-phenanthroline and benzimidazole

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We demonstrate a rational template carbonization method to produce nitrogen-containing nanoporous carbons at 800 °C, using 1, 10-phenanthroline (or benzimidazole) as carbon/nitrogen source and magnesium citrate as template. The mass ratio of 1, 10-phenanthroline (or benzimidazole) and magnesium citrate has exerted the vital role in the determination of pore structures and the resulting electrochemical performances. It reveals that the carbon-P:Mg-1:1 (obtained by heating 1, 10-phenanthroline and magnesium citrate at 800 °C with the mass ratio of 1:1) and carbon-B:Mg-1:1 (obtained by heating benzimidazole and magnesium citrate at 800 °C with the mass ratio of 1:1) samples both are amorphous, nitrogen-containing, and highly nanoporous in nature. The carbon-P:Mg-1:1 sample has a large BET surface area of 1,657.4 m2 g−1 and high pore volume of 1.83 cm3 g−1, and those of carbon-B:Mg-1:1 sample are of 1,105.4 m2 g−1 and 1.67 cm3 g−1, respectively. Based on a three-electrode system using a 6-mol L−1 KOH aqueous solution as electrolyte, the carbon-P:Mg-1:1 and carbon-B:Mg-1:1 samples can deliver large specific capacitances of 289.0 and 255.6 F g−1 at a current density of 0.5 A g−1. They can also exhibit high energy densities of 40.1 and 35.5 Wh kg−1 when designated the power density as 0.25 kW kg−1 as well as highly long-term cycling durabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  CAS  Google Scholar 

  2. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  3. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785

    Article  CAS  Google Scholar 

  4. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  5. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    Article  CAS  Google Scholar 

  6. Shen W, Fan W (2013) Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A 1:999–1013

    Article  CAS  Google Scholar 

  7. Su F, Poh CK, Chen JS, Xu G, Wang D, Li Q, Lin J, Lou XW (2011) Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci 4:717–724

    Article  CAS  Google Scholar 

  8. Chen LF, Zhang XD, Liang HW, Kong M, Guan QF, Chen P, Wu ZY, Yu SH (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS NANO 6:7092–7102

    Article  CAS  Google Scholar 

  9. Yang G, Han H, Li T, Du C (2012) Synthesis of nitrogen-doped porous graphitic carbons using nano-CaCO3 as template, graphitization catalyst, and activating agent. Carbon 50:3753–3765

    Article  CAS  Google Scholar 

  10. Chen XY, Chen C, Zhang ZJ, Xie DH, Deng X, Liu JW (2013) Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J Power Sources 230:50–58

    Article  CAS  Google Scholar 

  11. Horikawa T, Sakao N, Sekida T, Hayashi J, Do DD, Katoh M (2012) Preparation of nitrogen-doped porous carbon by ammonia gas treatment and the effects of N-doping on water adsorption. Carbon 50:1833–1842

    Article  CAS  Google Scholar 

  12. Nishihara H, Kyotani T (2012) Templated nanocarbons for energy storage. Adv Mater 24:4473–4498

    Article  CAS  Google Scholar 

  13. Kyotani T, Sonobe N, Tomita A (1988) Formation of highly orientated graphite from polyacrylonitrile by using a two-dimensional space between montmorillonite lamellae. Nature 331:331–333

    Article  Google Scholar 

  14. Morishita T, Tsumura T, Toyoda M, Przepiórski J, Morawski AW, Konno H, Inagaki M (2010) A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon 48:2690–2707

    Article  CAS  Google Scholar 

  15. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D Aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47:373–376

    Article  CAS  Google Scholar 

  16. Chaikittisilp W, Ariga K, Yamauchi Y (2013) A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mater Chem A 1:14–19

    Article  CAS  Google Scholar 

  17. Morishita T, Soneda Y, Tsumura T, Inagaki M (2006) Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors. Carbon 44:2360–2367

    Article  CAS  Google Scholar 

  18. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  19. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43:1731–1742

    Article  CAS  Google Scholar 

  20. Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43:153–161

    Article  CAS  Google Scholar 

  21. Shen W, Li Z, Liu Y (2008) Surface chemical functional groups modification of porous carbon. Recent Patents Chem Eng 1:27–40

    Article  CAS  Google Scholar 

  22. Wang DW, Li F, Yin LC, Lu X, Chen ZG, Gentle IR, Lu GQ, Cheng HM (2012) Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions. Chem Eur J 18:5345–5351

    Article  CAS  Google Scholar 

  23. Xu B, Duan H, Chu M, Cao G, Yang Y (2013) Facile synthesis of nitrogen-doped porous carbon for supercapacitors. J Mater Chem A 1:4565–4570

    Article  CAS  Google Scholar 

  24. Chen XY, Chen C, Zhang ZJ, Xie DH (2013) Gelatin-derived nitrogen-doped porous carbon via a dual-template carbonization method for high performance supercapacitors. J Mater Chem A 1:10903–10911

    Article  CAS  Google Scholar 

  25. Chen XY, Chen C, Zhang ZJ, Xie DH (2013) Nitrogen-doped porous carbon spheres derived from polyacrylamide. Ind Eng Chem Res 52:12025–12031

    Article  CAS  Google Scholar 

  26. Chen XY, Chen C, Zhang ZJ, Xie DH, Deng X (2013) Nitrogen-doped porous carbon prepared from urea formaldehyde resins by template carbonization method for supercapacitors. Ind Eng Chem Res 52:10181–10188

    Article  CAS  Google Scholar 

  27. Zhang ZJ, Chen C, Cui P, Chen XY (2013) Nitrogen-doped porous carbons by conversion of azo dyes especially in the case of tartrazine. J Power Sources 242:41–49

    Article  CAS  Google Scholar 

  28. Chen XY, Chen C, Zhang ZJ, Xie DH (2013) Synthesis and capacitive performance of nitrogen doped porous carbons derived from sodium carboxymethyl starch. Powder Technol 246:201–209

    Article  CAS  Google Scholar 

  29. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  30. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21101052), China Postdoctoral Science Foundation (20100480045), and the University Natural Science Research Project of Anhui Province (KJ2013B209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Ying Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 111 kb)

Fig. S2

(DOC 1,169 kb)

Fig. S3

(DOCX 226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z.J., Qi, M.C., Chen, X.Y. et al. Nitrogen-containing nanoporous carbons by a rational template carbonization method evinced in the cases of 1, 10-phenanthroline and benzimidazole. J Solid State Electrochem 18, 1879–1887 (2014). https://doi.org/10.1007/s10008-014-2423-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2423-1

Keywords

Navigation