Skip to main content
Log in

Microcapillary electrochemical droplet cells: applications in solid-state surface analysis

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Capillary–based microcells, also known as microcapillary electrochemical droplet cells, have proved their capabilities in various electrochemical surface investigations in recent decades. Due to the large measured current density and the high limiting current, this technique provides high–resolution electrochemical responses. Current densities in the range from a few femto to pico Acm−2 to hundreds of Acm−2 can be measured using this technique. Various applications for microcapillary cells have been reported. Technical limitations, such as the Ohmic drop and changes in the composition of the measurement area near the tip of the microcapillary have also been considered by some researchers. The rapid increase in the application of microcells and the increase in the number of related reports published in the literature have paralleled recent attempts to develop and improve microcell setups, showing that this technique is already well established for electrochemical surface studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. www.library4science.com, chromatography book series, R. P. W. Scott

  2. Liu TY, Boykins RA (1989) Anal Biochem 182:383–387

    Article  CAS  Google Scholar 

  3. Kovács ZI, Palkovits M (2010) J Neurosci Methods 190:229–234

    Article  Google Scholar 

  4. Charles PT, Rangasammy JG, Anderson GP, Romanoski TC, Kusterbeck AW (2004) Anal Chim Acta 525:199–204

    Article  CAS  Google Scholar 

  5. Végvári Á (2005) Compr Anal Chem 46:149–252

    Article  Google Scholar 

  6. Lamaka SV, Souto RM, Ferreira MGS (2010) In: Mendez–Vilas A, Diaz J (eds) Microscopy: science, technology, applications and education. Formatex, Spain, pp 2162–2173

    Google Scholar 

  7. Park JO, Paik CH, Alkire RC (1996) J Electrochem Soc 143(8):L174–L176

    Article  CAS  Google Scholar 

  8. Wen R, Oakley B II (1990) J Neurosci Methods 31:207–213

    Article  CAS  Google Scholar 

  9. Ogle K, Baudu V, Garrigues L, Philippe X (2000) J Electrochem Soc 147(10):3654–3660

    Article  CAS  Google Scholar 

  10. Böhni H, Suter T, Schreyer A (1995) Electrochim Acta 40:1361–1368

    Article  Google Scholar 

  11. Krawiec H, Vignal V, Banas J (2009) Electrochim Acta 54:6070–6074

    Article  CAS  Google Scholar 

  12. Brandl W (1992) Electrochim Acta 37:2263–2268

    Article  CAS  Google Scholar 

  13. Alkire RC, Wong KP (1988) Corros Sci 28:411–421

    Article  CAS  Google Scholar 

  14. Riley AM, Wells DB, Williams DE (1991) Corros Sci 32:1307–1313

    Article  CAS  Google Scholar 

  15. Pistorius PC, Burstein GT (1991) Electrochemical methods in corrosion research. Proc 4th Int Symposium, Espoo, p 429

    Google Scholar 

  16. Lohrengel MM (1997) Electrochim Acta 42:3265–3271

    Article  CAS  Google Scholar 

  17. Hassel AW, Lohrengel MM (1997) Electrochim Acta 42:3227–3333

    Google Scholar 

  18. Suter T, Böhni H (1997) Electrochim Acta 42:3275–3280

    Article  CAS  Google Scholar 

  19. Abodi LC, Rose JAD, Van Damme S, Demeter A, Suter T, Deconinck J (2012) Electrochim Acta 63:169–178

    Article  CAS  Google Scholar 

  20. Sanchez M, Aouina N, Rose D, Rousseau P, Takenouti H, Vivier V (2012) Electrochim Acta 62:276–281

    Article  CAS  Google Scholar 

  21. Paussa L, Andreatta F, Navarro NCR, Duran A, Fedrizzi L (2012) Electrochim Acta 70:25–33

    Article  CAS  Google Scholar 

  22. Schneider M, Langklotz U, Michaelis A, Arnold B (2010) Surf Interface Anal 42:281–286

    Article  CAS  Google Scholar 

  23. Krawiec H, Vignal V, Akid R (2008) Surf Interface Anal 40:315–319

    Article  CAS  Google Scholar 

  24. Ha HY, Park CJ, Kwon HS (2007) Corros Sci 49:1266–1275

    Article  CAS  Google Scholar 

  25. Buytaert G, Premendra P, de Wit JHW, Katgerman L, Kering B, Brinkman HJ, Terryn H (2007) Surf Coat Technol 201:4553–4560

    Article  CAS  Google Scholar 

  26. Oltra R, Vignal V (2007) Corros Sci 49:158–165

    Article  CAS  Google Scholar 

  27. Stromberg C, Thissen P, Klueppel I, Fink N, Grundmeier G (2006) Electrochim Acta 52:804–815

    Article  CAS  Google Scholar 

  28. Birbilis N, Padgett BN, Buchheit RG (2005) Electrochim Acta 50:3536–3544

    Article  CAS  Google Scholar 

  29. Lohrengel MM, Moehring A, Pilaski M (2000) Fresenius J Anal Chem 367:334–339

    Article  CAS  Google Scholar 

  30. Arjmand F, Adriaens A (2012) Electrochim Acta 59:222–227

    Article  CAS  Google Scholar 

  31. Staemmler L, Suter T, Böhni H (2004) J Electrochem Soc 151:G734–G739

    Article  CAS  Google Scholar 

  32. Lohrengel MM, Heiroth S, Kluger K, Pilaski M, Walther B (2006) Electrochim Acta 51:1431–1436

    Article  CAS  Google Scholar 

  33. Arjmand F, Adriaens A (2012) Int J Electrochem Sci 7:8007–8019

    CAS  Google Scholar 

  34. Arjmand F, Adriaens A (2012) Materials 5:2439–2464

    Article  CAS  Google Scholar 

  35. Suter T, Böhni H (2001) Electrochim Acta 47:191–199

    Article  CAS  Google Scholar 

  36. Lohrengel MM, Moehring A, Pilaski M (2001) Electrochim Acta 47:137–141

    Article  CAS  Google Scholar 

  37. Schultze JW, Bressel A (2001) Electrochim Acta 47:3–21

    Article  CAS  Google Scholar 

  38. Eklund JC, Bond AM, Alden JA, Compton RG (1999) Adv Phys Org Chem 32:1–120

    CAS  Google Scholar 

  39. Lohrengel MM, Rosenkranz C, Kluppel I, Moehring A, Bettermann H, Van den Bossche B, Deconinck J (2004) Electrochim Acta 49:2863–2870

    Article  CAS  Google Scholar 

  40. Eng L, Wirth E, Suter T, Böhni H (1998) Electrochim Acta 43(12–20):3029–3033

    Article  CAS  Google Scholar 

  41. Klemm SO, Schauer JC, Schuhmacher B, Hassel AW (2011) Electrochim Acta 56:4315–4321

    Article  CAS  Google Scholar 

  42. Schultze JW, Tsakova V (1999) Electrochim Acta 44:3605–3627

    Article  CAS  Google Scholar 

  43. Jorcin JB, Krawiec H, Pebere N, Vignal V (2009) Electrochim Acta 54:5775–5781

    Article  CAS  Google Scholar 

  44. Oltra R, Keddam M (1988) Corros Sci 28:1–18

    Article  CAS  Google Scholar 

  45. Suter T, Böhni H (1998) Electrochim Acta 43:2843–2849

    Article  CAS  Google Scholar 

  46. Osozawa K, Okato N (1979) In: Kolotyrkin YM (ed) Proc first Soviet–Japanese seminar on corrosion and protection of metals. Nauka, Moscow, p 229

    Google Scholar 

  47. Perren RA, Suter TA, Uggowitzer PJ, Weber L, Magdowski R, Böhni H, Speidel MO (2001) Corros Sci 43:707–726

    Article  CAS  Google Scholar 

  48. Dubuisson E, Lavie P, Dalard F, Caire JP, Szunerits S (2006) Electrochem Comm 8:911–915

    Article  CAS  Google Scholar 

  49. Vignal V, Krawiec H, Heintz O, Oltra R (2007) Electrochim Acta 52:4994–5001

    Article  CAS  Google Scholar 

  50. Ha HY, Kwon H (2007) Electrochim Acta 52:2175–2180

    Article  CAS  Google Scholar 

  51. Vignal V, Ba D, Zhang H, Herbst F, Le Manchet S (2012) Corros Sci. doi:10.1016/j.corsci.2012.11.013

    Google Scholar 

  52. Breimesse M, Ritter S, Seifert HO, Virtanen S, Suter T (2012) Corros Sci 55:126–132

    Article  Google Scholar 

  53. Kim SU, Kwon H, Kim H (2007) Solid State Phenom 124–126:1533–1536

    Article  Google Scholar 

  54. Böhni H, Suter T, Assi F (2000) Surf Coat Technol 130:80–86

    Article  Google Scholar 

  55. Schreiber A, Rosenkranz C, Lohrengel MM (2006) Electrochim Acta 52:7738–7745

    Article  Google Scholar 

  56. Krawiec H, Stanek S, Vignal V, Lelito J, Suchy JS (2011) Corros Sci 53:3108–3113

    Article  CAS  Google Scholar 

  57. Rose JAD, Suter T, Balkowiec A, Michalski J, Kurzydlowski KJ, Schmutz P (2012) Corros Sci 55:313–325

    Article  Google Scholar 

  58. Guseva O, Rose JAD, Schmutz P (2013) Electrochim Acta 88:821–831

    Article  CAS  Google Scholar 

  59. Krawiec H, Szklarz Z, Vignal V (2012) Corros Sci 65:387–396

    Article  CAS  Google Scholar 

  60. Sorriano C, Oltra R, Zimmer A, Vuillemin B, Borkowski C (2013) Surf Interface Anal. doi:10.1002/sia.5223

    Google Scholar 

  61. Andreatta F, Lohrengel MM, Terryn H, de Wit JHW (2003) Electrochim Acta 48:3239–3247

    Article  CAS  Google Scholar 

  62. Lill KA, Hassel AW, Frommeyer G, Stratmann M (2005) Electrochim Acta 51:978–983

    Article  CAS  Google Scholar 

  63. Hamelmann T, Lohrengel MM (2001) Electrochim Acta 47:117–120

    Article  CAS  Google Scholar 

  64. Lohrengel MM, Rosenkranz C, Rohrbeck D (2007) Microchim Acta 156:163–166

    Article  Google Scholar 

  65. Pilaski M, Hamelmann T, Moehring A, Lohrengel MM (2002) Electrochim Acta 47:2127–2134

    Article  CAS  Google Scholar 

  66. Hildebrand G, Schreiber A, Lohrengel M, Strietzel R, Liefeith K (2006) Corros Sci 48:3629–3645

    Article  CAS  Google Scholar 

  67. Vignal V, Krawiec H, Heintz O, Mainy D (2013) Corros Sci 67:109–117

    Article  CAS  Google Scholar 

  68. Mennucci MM, Sanchez–Moreno M, Aoki IV, Bernard MC, de Melo HG, Joiret S, Vivier V (2012) J Solid State Electrochem 16:109–116

    Article  CAS  Google Scholar 

  69. Oltra R, Vuillemin B, Thebault F, Rechou F (2008) Electrochem Comm 10:848–850

    Article  CAS  Google Scholar 

  70. Homazava N, Ulrich A, Trottmann M, Krahenbuhl U (2007) J Anal At Spectrom 22:1122–1130

    Article  CAS  Google Scholar 

  71. Homazava N, Ulrich A, Krahenbuhl U (2008) Spectrochim Acta B 63:777–783

    Article  Google Scholar 

  72. Homazava N, Suter T, Schmutz P, Toggweiler S, Grimberg A, Krahenbuhl U, Ulrich A (2009) J Anal At Spectrom 24:1161–1169

    Article  CAS  Google Scholar 

  73. Homazava N, Shkabko A, Logvinovich D, Krahenbuhl U, Ulrich A (2008) Intermetallics 16:1066–1072

    Article  CAS  Google Scholar 

  74. Ulrich A, Ott N, Tournier–Fillon A, Homazava N, Schmutz P (2011) Spectrochim Acta B 66:536–545

    Article  CAS  Google Scholar 

  75. Klemm SO, Topalov AA, Laska CA, Mayrhofer KJJ (2011) Electrochem Comm 13:1533–1535

    Article  CAS  Google Scholar 

  76. Lohrengel MM, Kluppel I, Rosenkranz C, Bettermann H, Schultze JW (2003) Electrochim Acta 48:3203–3211

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Bijzonder Onderzoeksfonds (BOF) of Ghent University is acknowledged for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzin Arjmand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arjmand, F., Adriaens, A. Microcapillary electrochemical droplet cells: applications in solid-state surface analysis. J Solid State Electrochem 18, 1779–1788 (2014). https://doi.org/10.1007/s10008-014-2413-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2413-3

Keywords

Navigation